Binary Search Tree
Paper Name : Data Structure and Algorithm
Paper Code : C5302

Department of Computer science & Engineering
Siliguri Institute of Technology

September 4, 2019

Outlines

Definition

v

v

Representation

» Operation

v

Complexity

v

Application

Definition
» Definition : A Binary search Tree is a Binary Tree in which
every node value grater than of its right child and less then of
its left child.
» Example :

Figure: Example of Binary Search Tree.

Representation
A Binary search Tree can represent in two way: array
representation and Linked list representation
» Array Representation:

30 [20 [40 |10 [25 [- [- [5 |- [23[27]

Table: Array Representation of BST

» Linked list Representation:

[
@
ra

Figure: linked list Representation

Operation of BST

In BST there are four basic operation: Traversal, searching, Insert
a node, Delete a node

» Traversal:

» Searching:

v

Insert a node:

v

Delete a node:

Traversal
Traversal means visiting each node exactly once.

Figure: Example of Binary Search Tree.

> In Order Traversal: The traversing sequence is
5,10,20,23,25,27,30,40

» Pre Order Travercal- The travercino cediience 1c

Search a node from BST

Search a node from a Tree means the desired node exist or not in a
BST. Two way to search a node : recursive way and Non recursive

way.

Figure: SearchNode25and21

Algorithm for Searching

Algorithm 1 Recursive Search algorithm

INPUT: Binary search Tree (T) and current node i.e present node
PN under scanning . Searched item/key is K

OUTPUT: KEY ELEMENT FOUND if the function return 1 i.e K
in T other wise KEY ELEMENT NOT FOUND the function return
0.

Recursive Searching(TNode x PN,K)
if PN == NULL then

Return 0
else if K == PN — Data then

Return 1
else if K < PN — Data then

Return Recursive Searching(PN — Lchild, K)
else

Return Recursive Searching(PN — Rchild, K)
end if

Insert a node in a BST

Insert 30
—

Insert 20

®®

Insert 40
—

l

Insert 10 (10 25
et

Insert 25
—

&—®

Delete a node from a BST

During delete a node there are three possibility :
i) Deleted node does not have any child

ii) Deleted node have only one child

iii)Deleted node have two child

» No child:

—

Delete One child

—

Figure: Detete 10 from Binary Search Tree.

Delete Two child

@'@ @ Delete 20
—

Figure: Detete 20 from Binary Search Tree.

Complexity of BST

Table: Complexity of BST operations

Operations | Best Case Average Worst Case
Case

Traversal O(N) O(N) O(N)

Searching 0(1) O(log N) O(N)

Insert 0(1) O(log N) O(N)

Delete 0(1) O(log N) O(N)

Applications of BST

(i) BST Used in many searching application where data is
constantly entering or leaving such as map and set object in many
language library

(ii) Storing a set of Names and being able to look up based on a
prefix of the name.

(iii) BST is Used to express arithmetic expressions

(iv) To implement Huffman Coding Algorithm Binary search tree is
used

Thank You

o N

kb (ﬁfk_.; (m;»‘;l .
Eriatusls fo o formt. of emetie ?Nd_a . ?mw&;:
Jeme B e P\w.\a bt Q“Pmeommg o
stasl or.
0. et v O
£pf % Pa_am. fudex szass O “P— W&’&?M@é

T Qudh. ome. geme. Supresiacs Hue enf
H’Mﬁ‘m g e Wima; " ?&WM)W‘L
e guprosacd. gene. 75 cold 1o &2 wegpoBtiC

(AT ':1"_:‘
r&asl o) —
[U™

3 ’ -~ =
) ~ » ™ AL =
z%’*?ﬂ elem Qe lootreeem - ¥0 _ng?_@f} Lo, purer. P

-_—

a5

0 rPe e V-
Wk Ok prh (0 444 Bprauc
Pontoncarille”

. ?) 2wolve s ‘fcwtw’zéalwlf’d.

T Tmvolres drea— allelie - | ‘
Yene. domeAfom. [gm.Woap.

% Ome. ol Wids-m Fhe > one. geme- 1T .
e cot-oy-otuen- altele— . effeat-af ooz ML
O~ Hug Same. Goue- ASHexend— quue loct:

po¥z. " { 8 |

i Dy e clonumand allele. (og -, oF Jae-
a{;awm' Qome o '@8.83 omd. enpres

T i A e fous
S The. Bodlele CW%*@ el Q‘”‘)) M@ wt
ST gouotyfe AABE oo Ao Bl ol MRl o7 fa kb produee
e Same. puenotype ‘ |

> (emotyre oaBB 6% o Bb amd. A&kb produes fwo addio
lPWﬁ{l@.

Scanne d with CamScanner

Teg UPQ ‘é) C\Om?man\} eplatos’s mod?—ﬁ’e,& he alasgfasl readi0
% 97815:) tnio 18190

QD_ kb b
ab_
| BB, Bh B
A, R Bb, Bk, bb A
Exameple —
Sl

~ Pwe leed? te -Pm-l-eék AN
e do @W veruety 1a cwsaed ‘H/L
S whle Ve Groom. v %@ %b‘g&‘ Cedl

M%#MWQW 1
gone (epTattn éﬁgb ¥ ed ey e dowidnank
PP WYX o%a WE Wy WY |
C&W@ C_aé—g{,\) NG ‘m wrg\/ e %E
wa / wwy wwja WY »Siféi

(cuw%@ | epdte s

e wifte. & Yellow! Greun ™\ WY WW{Z w%*ﬂde

(wlite |eudte yellow
la v gyl

Wd \]wYA Wwda ww\fa- WWCLS\&

;Lu“ff/ (u}ag-}tﬁu”w - Pream

Fy .

Scanne d with CamScanner

%
i

™ W\&gpﬁ’&mﬁ’é (%:3:4)» RopessPe. opfstarl’d oaeund aham. ‘
g nelegsfie. alletes off Ome gane- (08LE Cag\, 4(,4,9.9{)?&}&4’& L(Xl@
&Llf?lf%b e pue P euf%&%%rﬂ. O\f_,me ollole s - Mofu%a:'@.
(88, &b on-bb allelisy) . TuPs -{-ape oft epfetests Py called, rxasgsive.
eplstasds.

Uz Lot us quess , -he Lowe. fugmép?a elosed eorvuspomd
404“0"8{ {)Q’ A-— B—-_) A-—bbgME)-—-DCUP\A mgf’yze?ﬂ@z- .
%P‘“‘“— ome. »sj’m(ﬂ M@m«o,;aaowﬁ 720, (.3 55VC. gemo pe. (f.e A-bbotz
aa® Huag Hie. same. plemciype. ab tue doukle moﬁa«ﬁufa |
netesstue. (aabl), fan_ o, 9} 314 puanotype. xaffo wifllag, Oblaind.

tz fop ot - futte. labpadon. Rebdover. breed of d@%/g e B
eMeodes o Yotz am. fmportanCe. sdep fin e preodueifom
0 guelanlPo Tie. Aomlvamdoliele , B P& more. %QF@"M:{L\/?;’}’

74

P%MML.L preociafon. o e nedgsfie. b oltele., thus B
appeans ok, cad by appeatd s - A seepud. (ocub,

) INIIN C@LQE‘WQOU- £, aopdrols | E‘LQ.C‘.Q{DOE?‘H%M_—-O'Q wglomIon fo

e hafus” A Last ome JumeHomal £ dllele £5 wayfred Yo
copostic. PRanuendt (uleather, B P kloex o7 ktowen- . T,
Al rzchvitoverrd tuod- Ve ee- fail 40 d,e,{aozxﬂ a Meol o

(and 0 appeay. pale HellouD, %mﬁ@mfl% A . gemotyfe-
o -t Bloous. - |

The. ce. 8W<m Moo g% o be. epfatet. o hoth
He B amd. b . Bim0e. Hie L&omzﬁ Cc‘]t@u% ce. Puewﬂ%ff&’/mﬁﬁé
“lte. puemolype of e B (peus - Tue B/b locus 7% Aald fo he .
_f\dﬁf)_f_‘ufd'a{—?)(i_‘-lo Hee eo. é]CMO\iJP(é“. Be eartdy et muasktro| ollolo_
6 I HPE onde Pg nedossive. ,Wls & aallo d. mev%zj(é&

ePEiasts .
@Do m X E‘@

Bladr :jgugm(_{éale eliou?y

(mo Pramenmd
Fy domordiom - \/ g)

‘\waa ' L@’?—{,ﬂ
0 CRLBeH)

D & B

Scanne d with CamScanner

F GE B bE be .
-L mmo [U (S i »,,\, S
c&‘a\im ‘ BE eBrr. |Pere. | BbLE) Bhie
| Qoew [ity | Blat | Blaes

SR

B- Plagys B e et
T MBEe | PRee. [PbEe | Bbe
e, b | s [e | v
Jelous - L | QbEE [BhEe | bbEE bbEe
\3: 3‘,.,%] b'mf_’,w oo bt .| la/To i

Bose oo — @ @ 0—g—71"

be | Boke | Bbee| bife |bben

Ejlﬂﬁ"\’ \/fU 200y k’(;'.}. o ‘(/[:f/';: ue -

0 Do, Reossi
homes 2. GW@—@_&J& ot gemo. oa? have_

OO Plonstype g o 004 bW of diom. produce.
o %ﬁ’e %QWF&W"O 2733 L eowld kgoys 2,
J BB, coBb, ABkb, Aokb amd aaf Produg,
Q.
Picsemy- %LP Rolw. domPmomd- alieles ademe e,

0geton. Omtat fuem |
U Qam- @ oo memd
o e
(4 — -

j’t‘f’/‘& Oadlo. A\‘ J
‘H(.C, 'Ea”'\@;{-PO 2l e CDALLPLQ_W% -
PROCILLML;(» : d oy Mdﬁmz +o Produag o Bl

o Grouny Yol ro-

: L@LWGQQ(L 0
a_ QO(*@?Z«(QSC& M’w m.'{’L(,L(.CCL FoL CM—LL%L
o f oo @1@(’ =
Qé\ L’Q(,&j ‘H(.O_. a

(0 ges
ColoTzleny deme A _y Qolor, (32 Qe 13 Purplo
GGW\POL‘MA C,Ofm/POUMA I ;’i"‘}m@;\i—

(

iy shvpLifred. pot SlhowP

€onploand
Qome. Oedfrn. oL A andR WW&

Scanned with CamScanner

Fi Qemecedio: Aﬂk\bl
44 e (awAe. -) Ejuﬁ%fa. 1
—ﬁﬂoi“i“/-ﬁwwm@
Cszpw— Colo |
e/‘a %u@
Fq W%om / L \
o 91 /8 L= (Bllse

(aplo i g | pARE | AP Aaee [hap |

: Puplo. | puweple.| purple . Purple. .|
1o |AABL | ARbL | AaBo | Rabb
Pufde| wudte| Pwfle | cudtol

AoBR | RoBb | AABB | anBb

i pusplo_ | puaple. | (edte Gudte
Mo | AnRb | hakb | 0alb | asbb l
e

P U.‘lf,{p__ utte alPre \ [LC,U«‘Qf'

eolons .

e Q20 , v K . .
¥ l‘ 3 %_, mﬂzﬁ W[g&él PF@MM}’ ﬂ,lﬂLPiW
éam%&z/ C'JAO/V%Q——
eomplefo .

o, S 0ase. domdinand- allebed om hott (ocusy, o swoyuiied

hemle. (utestown., A and B ol o, Pruedonct- -]Lc(egj sresuld trnde
Puapl- eHeei muobning Jue coudio . :

") buplicate. Domfnamt Gome. (1570 5 e, Jomtrand aiteleg o}

kot tue geme. preduce. e, ame. PL(LMQ{*[{)((: Mmjﬂt’w 1% flee-
Aek(6) 16\

Im ’wa Cane. ol leas: " Ome. C‘() o riomdmam} C\LQUL
V6 m(’('oww? for, tue. Pum(cr((tjpf’a ffoop o, d ANBE, haBh,
Rl aaq by s aodib fjﬂ() one, Plemof ﬂ’g

T L S —————— j

Scanned with CamScanner

Tn . abaomeo . of- cul fre. dhooufnand-Gone (oaby fo ase. O‘CQO_
aabb_) e 1o, palve Pw*&j{)& acPll kg eufy - md"‘f)u@fe
one-cne abo oated. paedoalleles .

Yer, ampHz Prg memtedHom. wwot@jx HPS asc,
T cunend, proviles am enample. o tubs duptidate Geme a2tion
e blogyatiesfs ol sied, prgauent neoon. e snfese of Gt
Soed s Prvowesd Anan Feme, o of. coufol we @l %D/C,LAC
e B, Noraual, e 00 sz,ahc'ory\,%? Yo ook geed Fg amaivdam
AP fametfon. of- efruo of fuse Jemes Po ok fin omg,
awkomd— (e.a v efien. an B—, oy A —blp)- Oy Heo
Teassive. puctanck (@) | ceolifan. (owr & #‘m‘;\@a\. A ko

Jeme s, Sroues O PLW“‘@PQ Hiod- 'C{L?EH@-(/@ Prom Hwad Preadug,
Y an f-the ot gerstybes. h e somable. Wterpeetetfon
MHPE sl 16 Htou- kot geme. emeodog Yo 8 Ome
Wiologiuar. fumetfom, amd. eftter. ouwe aloue 4 dbiofont-
672 tie. mermal a@j‘?v?‘l’a % Jtoy poqw;aéﬁ _

5&6 CM) \7‘/ *CC@@O’@T)'
15 (Re) T
Fo poQe
A Y. [) o) g
AR A@ﬁb//\ﬂnb AaBR
fy gouoratfon~ - y
T o > Al |ANB | ARG
L g, o Red | Red [Red
) ' (v!€
R(f . (e T ap | abp halpl,
15 i leed | ke |
o | halds | Rakb} ABab | ankl,
Ped, e,

Scanne d with CamScanner

v

e

PO% ot geme. ?MW@_#O‘IL_@ '@y Two cl@rM?W olleles,

hawe. studlae. €eat- m%&d oe acporocte, put Produds
amemneod %?e@- Goteom % comme. J@W.@L@ua@r@

oM T8 Ko wm A% g . que. Oy HOMm . Tuo_

Tofmteffeat af due altelos dppesta 1o ke addife. ez

W\/&’ QU 08 A 41y 40 gene. guous aomplete. dosd
. Wemao Canmor! bo @omefiorodd as 9.;{40,45’\/‘2@0‘%~

Im ease o8- gl dl

Lz A well Visewm - gsapuplo. o Wﬁwnf@ Qenc

@ ook, gene suow (ot o Aonufuonte

Tutoraetfon. 76 Lrerk Aucpe. P, Stumez. Apuadh . Tuese e,
e A4PeR of Pl Slape s pload V2, dPses Sphod

b cond (o e df s Alape P& Qondollod {Q{j e Ao

ot fenio.s CRand B, 4e gplecaol suape P4 Produted,

U7, Aopulromd cllelo. [ﬂ (8)rd B_> aud (Qlfﬁ &LW{PED‘L '{:?‘u?{é
2

OLQV@LQP . doukle. 7zeaesssve (aabb) Ploit 3

(=}

¢

p OOYe botwewem. At glope (AARR) ond Lo &M{Q@a@

Snafd procudo. Lise Sukape. {muc?’é T Fi. Tadels - modting
Py Plomts produted. plmdd cuPii. APsa, 2puodal., aud
Bhage fuulhs fn 5t 67 L wodfo b Fa ,ubg com be explal

ad Hollous —

Fy pnoge [Anee] [aobt)
4 Pneg Aﬁ* CQ}Of}(: 81}!%6 wﬂk i L:;vﬁ Ziga(‘e

[Aa% (pyae. Suope
_d) . A ' x B N ,P)u,:,ﬂ)\

m o @

Scanne d with CamScanner

%

Fa. Qemeced fom b
S N
RI6E ¢ sphorfeal lom AB ARGB
B e G ¢ 1. 6 B ;)Fod’
Ab !3/\%
— JLfg —
0B | AaBb
vfs @
DY

Ab

AABD
_free.

Nk b
oo o)

'ﬁaBb

) 10,;3 o

f\ ctkb

ot , plaads cuftn - o (olig)
Pullts, fuge wbi A-bl— (3/18) amd a0 B-(B/6) gerotypes
@w&ML&WMMQwmeﬁ%§ amel Plomds i ankb (3 /(e (6)
Eults . Mg, Pm Fg , aoranal A2 -

09+ .. A P /Lwdu%&c&_
Hadfo. &P/wu (00L geme aettorm. 1% olga -Pound

@%ﬂm Prodwag. (o

kel "o G ouLf()Of\..

ALV UZA% Ha -

C\\f~ Cme. %ﬂﬂm’ omd e

goUD 0y el MG?«E\%@@

komo

He € Gepe- o ke crpressed -

Conotype A RE, ARD,

fﬁ’"@{’d(’@« ac BB, aa By, acd anlsh
&ame. PVLQMOHa Pe..

Plenotepe. o -Hee
Pm&um MOty by

Soww O, Wet m@%&gp

Oz, genl. preoduses tuo. éﬁm pbtezuo Pe

Im Fg deneredion , \"‘Tc\\jmfje% waulfy
072 b (Uowo

2‘(&5 60&&@ Cee?

Y o .
habp Aably
pfda. | Dfsg
faBb | Aabb
.jﬁbﬁn¥8ﬁff§ﬁ
bl | oabb
S{i‘/}f’/u{\;’ﬂ_i CP'{I)’ULC_,D{)
anblh | arcbb

w\@/maét %72_

V?) .D t,(Cp 2 (PRI T e
up ode 7&@03 ?VQ' %dM@fQT‘CLB ‘ g) - TlLQ.AO%uO/)Lde‘

cllele Cpy , P?-HL@Z T Liomeog ¢ Y w C'Eﬂkdl‘ffﬁmj

e. allele ®b) ap.

f

SpuertPoon | Sehefoai] Lo

%ngaé wdu&a SIGEANEY

A @@n
Mot allg

Scanne d with CamScanner

Al
.

\ | e @ = N
e o ,L,l.'/ ‘ 4

[Ew @Wwed@mﬁmm bﬂ““ gene pol iy lpud OMe_
Qe cotiemn donufnamd eptarotl o Ho. OHZ omeh, *‘“’; |

Boopmd. Geme. Galom- Wm&@ﬂﬁ 8@% 2080 A5 , g,ﬁ"gJ(a:\fa o
Feathez. oolowz Dél FOU!’.L""'

Geme. Pafvz",ﬂ ¢ colowz. SmW koo 75 ok@m?maﬂ\f"(’o Colo
AP peoram e - I o .

‘ o coelite.,
Gome. poliz'p’: eolowz. YA lomu +o

Tnderaodfom ! Domdmant aoloze ulTkiHomn. preovemd ® @@m?z%
auon. eolok P Proemts Colod- gene . et WoauoZde

PRI provent B (o 0f. evern— cuhom chomb ot
Guleltore. Pi odesomdt

[Pegerd: TAnBR] \
- (e ta% uhfie plymovtic

oumy Roaw) |
AaRb]
o 7’”‘%\ L
i
Fa, P@fjﬁ/{‘@: @ @ @ ey

I%MO 5 My A \ a b ol
e 2 UV on | At | AoBB | papn.
® e onfte | mede. | ewPeo
T appn | Adeb | RaRb | pesh
Ab uite | oloned- C‘-"“y te. (‘olm?mé_“_‘
L paan | A0 [anBB) oony,
(0 wfie | Cewlte | w udte. ube
b Aoklo heralc 0\9&% Aokl
| wilbe. | coloed o\ gugres | Gfie.

Scanne d with CamScanner

/3jn“mg an(Qxypé? \(’m('(’ﬂ

Tke “pvwmp e QLH" 2NENTE f(/)ci% A a/r& @) Q&v\g é
AG £ ' v Sl ..(* PRone lemesds ()JZCR /ngoz — ,A_
- pod VPR |

A@ B - (AL)B) N\ (AAEQ

an

AD L = (A\B) U (®\4)

|
AP i SRl
Forlamedl Q0.5 -

wQamWﬁﬂlyAQ‘(-_-‘Am

11 /\nz /\4 ! m &1&3,4.:40.1/1,.:
G psbe PRI :

i) TRere ane pm = QZC,QW@MQEP-

)%%DX&WWMJW

“) The ‘universL aed) an Phe umion i‘lz"'uw
@JDQJ«ZP—/

!

/{/ waxﬂi 6)"“‘&‘29— cj&:PQe /Je;p'— ¢

0 = pAoBNc , = AnBacS ,'@,': A/\B(AC/W,,:AIIB%Cc

; 7 ¢ ¥ie
#y = AnBac , @ =A% Bne, 6 :‘A“na ncjfgézﬁenc

[~ PR b e i A O ke o e

e 2 Rl

T0emgotsnd~ lacas = (18) ALK =4 Anh = A
Aoweicdie > (2) (B uB)ve= Av(ruc) £0) (Ang)ac =An(Bnc)

Commdsdne 6 AvB = BuA (&) A0R=BNA .
Vlrildie : (D) Av(enc) @u@n(m;c)@ A0 (200) =(A2E)A

Loem%]) Augf-A 69 Anv = A
63 AvL=U ang =g

Tmuolidiom - @@9(: R "
&"U’&"G'CPJ.'@»AL)AC;(‘)‘ @ AAAC:/
@ - = 7
g Gl AR
%E:.gm% : (fo) @U@C @ (AA@C.
DA Y = 4B,
(Bf o Desnopgants bos 3 |
Gog” - i) f (495
- felef

By
jQ’W”' EJAM%J—M’%»
4 £ @b Me em M ’5\) ’ﬂﬂ‘%sé“‘k

,-'lllv"

, U;(\/‘Q({ 'ﬁ! h U/MQ b

(UM) SR T o)
TR‘-M&A-AO ‘

(ﬂUA)(\CBUA—)
Oéxwe DR e prins sim lacan an Bhe AT
A R oo . W THin Mbawgr; ﬁ%e&ﬁ,mﬁg
e Gunggte LE | PRt~ if- an epation E o an 20543
: L)

IRon i LDl £X o) dllso an 2

fiias-
p '_4\

L

T fuly Al e it [
AL Pue sl g iPass 7] c-T5g 284 4
D=Lz 52093) E4f 84688 ‘F'L{‘:mj

L) ALE, u) 4/\8 uy Aue 5) Anc)v};?qr.,’) -
i o \\

/I) A J BC /;D E | 4 1 \““»:.““‘\i,..

U“) A\B, BAp '.D\E'l. \
K ADE , COD ;,E@F |

0 o
I oy £ 198
' GCE neok) Mew el
45
49

I 8) G0 SR iv. 2 gale ol aff&ﬁ‘mgﬁ’ﬁ&vxf J

l (v gaines
:9(70 PRe CorncPme . :P(F?a& i R anL}QQ |
t’,jm .x’_alm 4 VCMQZAM aJZg»z NT F_-
Lovstes :Paeoaf% =f (P@U,[?e oy e wowee] Ty,
FosPame AL "’G"T"ﬁ_—%

) &&W&M&lw@%

{

‘ O \ ‘
: @R \
! '\’ 1' .
IR Qe i b
R R R
’ Y b Il {
|
|

B 2oel diribpce mﬁz‘ LAY
D810 nenl Newseck ol Tonen G- Imad o m
05-8 = F . al NG ey K Tadaonk/ (17 N AER]
PENT R 1'5"’&;'?
65- 19 8-} 79.8 Lo \;X

L5 — 12 484 7 ""8%"@) ‘1!
4173 = 30aal _

J .
" ¢ ,. l
C) 0 Q) “% Pl A %'0)
P\ il)é/' 5] U
» i ; ! .‘ ! ‘I é "1

LA\

(]

Formal Language & Automata Theory
PCC-CS 403

0 ©0-0

Topic: Finite Automata [FA]
DFA Minimization(Revisited)

Lecture - IX
Prof. Mithun Roy

5/11/2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT, Siliguri 1

Minimization of DFA

Minimization of DFA means reducing the number of states from given FA. Thus, we get the FSM(finite state
machine) with redundant states after minimizing the FSM.

We have to follow the various steps to minimize the DFA. These are as follows:
Step 1: Remove all the states that are unreachable from the initial state via any set of the transition of DFA.
Step 2: Draw the transition table for all pair of states.

Step 3: Now split the transition table into two tables T1 and T2. T1 contains all final states, and T2 contains
non-final states.

Step 4: Find similar rows from T1 such that: 1.6 (q,a)=p 2.6 (ra)=p
That means, find the two states which have the same value of a and b and remove one of them.

Step 5: Repeat step 3 until we find no similar rows available in the transition table T1.
Step 6: Repeat step 3 and step 4 for table T2 also.

Step 7: Now combine the reduced T1 and T2 tables. The combined transition table is the transition table of
minimized DFA.

Example - I

Step 1: In the given DFA, q2 and g4 are the unreachable
states so remove them.

Step 2: Draw the transition table for the rest of the states.

Q|x 0 1
- q0 ql q3
ql q0 q3
*q3 q5 q5
*q5 q5 q5

Step 3: Now divide rows of transition table into two sets as:
1. One set contains those rows, which start from non-
final states:

Q|Z 0 1
- q0 ql q3
ql q0 q3
2. Another set contains those rows, which starts from final states.
Q|Z 0 1
*q3 95 95
*g5 95 95

Step 4: Set 1 has no similar rows so set 1 will be the same.
Step 5: In set 2, row 1 and row 2 are similar since q3 and q5
transit to the same state on 0 and 1. So skip g5 and then replace

g5 by g3 in the rest. o
So, The Minimized DFA.

QX 0 1
*q3 q3 q3
Step 6: Now combine set 1 and set 2 as:
Q|Z 0 1
—q0 ql q3
ql q0 q3
*q3 q3 q3

Example - 11

Step 1: In the given DFA, all the state are reachable states.

Step 2: Draw the transition table for the rest of the states.

Q|Z 0 1
- a b C
b a d
*c e f
*d e f
*e e f
f f f

Step 3: Now divide rows of transition table into two sets as:
1. One set contains those rows, which start from non-

final states:

2. Another set co

Q|Z 0 1
- a b C
b a & c
f f
ntains those rows, which starts from final states.

Q|Z 0 1

*c e f

*d e f

*e e f

Step 4: Set 1 has no similar rows so set 1 will be the same.
Step 5: In set 2, row 1,2 and row 3 are similar since ¢, d and e
transit to the same state on 0 and 1. So skip e & d and then replace

e by cin the rest.

Step 6: Now combine set 1 and set 2 as:

QX 0 1 So, The
*c . f Minimized
DFA is

Q| X 0 1
—a b C
b a C

f f

*c C f

0,1

Homework - VIII

Minimized the given DFA

— '“x" ___H{_:' "Hh_lﬂ
A v a i /
" Q) " ﬂ“'l o o
Il'\“"'lF_.l-""lIl "“:: - "'-ll ..-""'LQ:"'_- -"__'II.-"I
f |I -\\ i"{_,-"';.
H| |e| x“‘?,; [
Ly SNt
4 H". ,-'I':.:'" -H‘:l"l '“'“H._L..l"' .Y
0 .I i Qs) .:I qQ:
— Il“tl_— 74 b N _.2 I
< a,b

5/11/2021

Thank You

Compiled by Prof. Mithun Roy, Department of CSE, SIT, Siliguri

Design & Analysis of Algorithm
PCC-CS 404

Topic: Dynamic Programming
[Matrix Chain Multiplication]

Lecture - VII
Prof. Mithun Roy

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT

Method

fib(7)
= —_i__i_________ h ________h__———__
ﬁh{ﬁ] fib(5)
_d__d-—-"d__d__- -—_____ /\
fib(5) fib(4) fib(4) fib(3)
fib(4) fib(3) fib(3) fib(2) fib(3) fib(2) fib{2) fib(1)
fib{3) fib(2) fib(2) fib(1) fib(2) fib(1) fib(2) fib(1)
fib(2) fib(1)

TIn]=TIn—-1|+T[n-2]|, T[0] =1,T[1] =1
T|2]| =T[1]+T[0] =2,T|3]| =T|2] +T|1]

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT

Merge Sort Method

7 X

B|27 43 82|10
Subp{oblem
S1ze
38|27 |43 3 82|10
| B "
w(27| |@|3 9|82 10 / \
1 n/2
¢ r/_ \4 . / \
38 ri 43 3 a9 82 10
- , : n/4 n/4 n/4
|\ .l. '.
27| 38 3|43 9|82 10 n/8 n/8 n/8 n/8 n/8 n/8
3127138 a3 10| 82 T S T I T
\x
N i i
n
31910 43| 82
12-06-2021 AR B3cbmpiled by Prof. Mithun Roy, Department of CSE, SIT

Total merging time

for all subproblems of

this size

on

2-cnl2=cn

4-cnfd=cn

8-cnl8=cn

n-c=cocn

Method

By X Cyx3 = Bpxg X Caxr = Rpxr (p XqXr)
A11A21A3

AlOXZOJAZOXBOJA30X4O
(A1X Ay) X Az = 6000 + Rypx30 X A3 = 6000 + 12000 = 18000

Ay X (A, X A3) = Ay X Rygxao + 24000 = 8000 + 24000 = 32000

(A1X Az) X A3

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x
12,12 x 20, 20 x 7. We need to compute M [i,j], 0 <1i, j< 5. We know M [j, i] = 0 for all i.

iy)0 =] ’
1) =3 min M@, k) + Mk + 1,) + DiADkDj i < J 1 | 2 | 3 | 4|5
I1<k<j) 120/ ;
1
A14><10'A210><3'A33><12'A412><20’A520><7 0 3620/ 2
Po=4,p1 =10,p, =3,p3 =12,p, =20 and ps = 7 0 7230/ ;
M(1,2) = M(1,1) + M(2,2) + pop1pz = 120 0 1?20 4
M(2,3) = M(Z,Z) + M(3,3) + P1P2P3 = 360 0 5

M(3,4) = M(3,3) + M(4,4) + p,p3ps = 720
M(4,5) = M(4,4) + M(5,5) + p3psps = 1680

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x
12,12 x 20, 20 x 7. We need to compute M [i,j], 0 <1i, j< 5. We know M [j, i] = 0 for all i.

.0 =]
I 1) = min M(i,k) + M(k + 1,j) + pi—1pkpj,i <Jj 1 2 3 4 5
= o | 120/ | 264/)
1 2

A14><10'A210><3’A33><12'A412><20’A520x7 0 3620/ 2
Po=4,p1 =10,p, =3,p3 =12,py, =20 and ps =7 o | 720/ ;

3

1680
0 |
M(1,1 M(2,3 = 360 + 480 > 264

M(1,2) + M(3,3) + popap; = 120 + 144 = 264

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x

12,12 x 20, 20 x 7. We need to compute M [i,j], 0 <1i, j< 5. We know M [j, i] = 0 for all i.
j
i — 0 L=
(@) = min M(i,k) + M(k + 1,j) + pi—1pkpj,i <Jj 1 2 3 4 5
I<k<j 0 120/ | 264/
1 2
A14><10'A210><3’A33><12'A412><20’A520x7 0 3620/ 1350
Po=4,p1 =10,p, =3,p3 =12,p, = 20 and p5 = o | 720/
3
1680
0 /4

M(2,4) = min {

M(2,2) + M(3,4) + p;p,p. = 720 + 600 = 1320
M(2,3) + M(4,4) + p;psp. = 360 + 2400 > 1320

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x

12,12 x 20, 20 x 7. We need to compute M [i,j], 0 <1i, j< 5. We know M [j, i] = 0 for all i.
j
M(i i) = 0 i:j
(L.)) = min M(i,k) + M(k + 1,j) + pi—1pkpj, i <J 1 2 3 4 S
Lske<J o | 120/ | 264/
1 2
A14><10'A210><3’A33><12'A412><20’A520x7 0 3620/ 1320
Po =4,p1 =10,p; =3,p3 = 12,p, = 20 and p5 = o | 720/ | 1140
3 /4
1680
0 /1

M(3,5) = min {

M(3,3) + M(4,5) + p,psps = 1680 + 252 > 1140
M(3,4) + M(5,5) + popaps = 720 + 420 = 1140

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x

12,12 x 20, 20 x 7. We need to compute M [i,j], 0 <1i, j< 5. We know M [j, i] = 0 for all i.
j
M(i i) = 0 i:j
(L.)) = min M(i,k) + M(k + 1,j) + pi—1pkpj, i <J 1 2 3 4 S
Lske<J o | 120/ | 264/ | 1080
1 2 /2
A14><10'A210><3’A33><12'A412><20’A520x7 0 3620/ 1320
Po=4,p1 =10,p2 =3,p3 = 12,p, =20 and ps =7 o | 720/ | 1140
3 /4
1680
(0 /4

M(1,1) + M(2,4) + popips = 1320 + 800 > 1080
M(1,4) = min{ M(1,2) + M(3,4) + pop,ps = 120 + 720 + 240 = 1080
M(1,3) + M(4,4) + pyp3p, = 264 + 960 > 1080

\

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x

12,12 x 20, 20 x 7. We need to compute M [i,j], 0 <1i, j< 5. We know M [j, i] = 0 for all i.
. j
i)0 Ji=]
(@) = r<nln M(i,k) + M(k +1,)) +pi—1pkpj i <J 1 2 3 4 5
Lsk<j o | 120/ | 264/ | 1080
1 2 /2
A14><10'A210><3’A33><12'A412><20’A520x7 0 3620/ 1%0 13;’0
po=4,p, =10,p, =3,p3 =12,p, =20 and ps =7 o | 720/ | 1140
3 /4
0 1320
[M(2,2) + M(3,5) + pypops = 1140 + 210 = 1350 ;

M(2,5) = min{ M(2,3) + M(4,5) + p;psps = 360 + 1680 + 840 > 1350

M(2,4) + M(5,5) + p1paps = 1320 + 1400 > 1350

\

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x

12,12 x 20, 20 x 7. We need to compute M [i,j], 0 <1i, j< 5. We know M [j, i] = 0 for all i.
.. j
M) =40 L=
(@) = min M(i,k) + M(k +1,j) + pi_1pxpj i <Jj 1 2 3 4 >
Lsk<j o | 120/ | 264/ | 1080 | 1344
1 2 /2 | /2
A14><10'A210><3’A33><12'A412><20’A520x7 0 3620/ 1320 1330
Po=4,p1 =10,p2 =3,p3 = 12,p, =20 and ps =7 o | 720/ | 1140
3 /4
([M(1,1) + M(2,5) + popips = 1350 + 280 > 1344 0 1?20

M(1,5) = min-

| M(1,4) + M(5,5) + popaps = 1080 + 560 > 1344

M(1,2) + M(3,5) + pop,ps = 120 + 1140 + 84 = 1344
M(1,3) + M(4,5) + popsps = 264 + 1680 + 336 > 1344

Algorithm

PRINT-OPTIMAL-PARENS(S,i,j)

ifi =j then
print Ai;

else
print "(”;
PRINT-OPTIMAL-PARENS(S,i,S(i,j));
PRINT-OPTIMAL-PARENS(S,S(i,j)+1,j);

print”)”;
end
j
1 2 3 4 5
0 1 2 2 2 1
0 2 2 2 2
0 3 4 3 S,3,3
; 1 ((A1A2)((A3A4)A5))
0 : In this way if you multiply then optimal
S Table number of scalar multiplication is required.

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 12

IT-5th Semester
Operating System (PCC-CS502)
Lecture-13

Resource Allocation Graphs:

Deadlocks can be described more precisely in terms of a directed graph called a system resource
allocation graph. This graph consists of a set of vertices V and a set of edges E. The set of vertices is
portioned into two different types of nodes P={P0, P1... Pn}, the set of the active processes in the system,
and R={R0, R1... Rn}, the set consisting of all resource types in the system. A directed edge from a process
Pi to resource type Rj signifies that process Pi requested an instance of Rj and is waiting for that resource.
A directed edge from Rj to Pi signifies that an instance of Rj has been allocated to Pi.

e Process

e Resource Type with 2 instances 1]
[]
« Pi requests instance of Rj 1]
[]
e Pi is holding an instance of Rj
R1] N R3
I R T B

R2 \E”:l R4

The resource allocation graph shown above depicts the following situation:
P={P1,P2,P3}

R={R1, R2, R3}

E={P1-R1,P2 - R3,R1 > P2,R2 - P2, R2 - P1,P3 - R3}

Resource Instances

One instance of resource type R1
Two instances of resource type R2
One instance of resource type R3
Three instances of resource type R4

Process States

Process P1 is holding an instance of resource R2, and is waiting for an instance of resource R1.
Process P2 is holding an instance of resource R1 and R2, and is waiting for an instance of resource R3.
Process P3 is holding an instance of resource R3.

Given the definition of a resource allocation graph, it can be shown that if the graph contains no cycles,
then no process is deadlocked.

If the graph contains cycles then:
e Ifonly one instance per resource type, then a deadlock exists.
e Ifseveral instances per resource type, possibility of deadlock exists.

Here is a resource allocation graph with a deadlock. There are two cycles in this graph:
{P1->R1,R1->P2,P2—>R3,R3->P3,P3>R2,R2—>P1}and

{P2 - R3,R3 - P3,P3 - R2,R2 - P2}

No process will release an already acquired resource and the three processes will remain in the deadlock
state.

R, 2

s

L """--.\/

3

P
@

HE

N
L
o

\’f’;‘i

The graph shown above has a cycle but there is no deadlock because processes P2 and P4 do not require
further resources to complete their execution and will release the resources they are currently hold in
finite time. These resources can then be allocated to P1 and P3 for them to resume their execution.

RESEARCH METHODOLOGY

NATURE & MEANING OF RESEARCH

In the modern complex world every society today is faced with serious social, economic &
political problems. These problems need systematic, intelligent and Practical solutions.
Problem solving is technical process. It requires the accumulation of new knowledge. Research
provides the means for accumulating knowledge & wisdom. In other words, research is a
systematic effort of gathering analysis & interpretation of problems confronted by humanity. It
is a thinking process and scientific method of studying a problem and finding solution. It is an
in-depth analysis based on reflective thinking.

DEFINITIONS

Research in common parlance refers to a search for knowledge. One can also define research as
a scientific and systematic search for pertinent information on a specific topic. Research is an
academic activity and the term should be used in a technical sense.

a) -William Emory defines Research as "any organised enquiry designed and carried out to
provide information for solving a problem"

b) The new Oxford English Dictionary defines research is "the scientific investigation into and
study of material, sources etc in order to establish facts and the reach new conclusions".

c) Redman and Mory defines, research as "a systematised effort to gain new knowledge".

d) "A careful investigation or inquiry specially through search for new facts in any branch of
knowledge" Advanced Leaner's Dictionary.

CHARACTERISTICS OF RESEARCH

The above definitions reveal the following characteristics of Research
1. Research is a systematic and critical investigation into a phenomenon.

2. It is not mere compilation of facts.
3. It adopts scientific method.

4. It is objective & Logical

5. Itis based on empirical evidence.

6. Research is directed towards finding answers to questions

7.1t emphasis the generalisation of theories and principles.

OBJECTIVES OF RESEARCH

The objectives of Research can be grouped under the following heads
1. To gain familiarity with a phenomenon or to achieve new insights to it.
2. To portray accurately the characteristics of a particular individual situation or a group.
3. To determine the frequency with which something occurs or with which it is associated
with something else.

4. To testa hypothesis or a casual relationship between variables.

MOTIVATIONS IN RESEARCH
What makes people to undertake research?

The answer is as follows.

1. Desire to get a research degree along with its benefits.

2. Desire to face the challenge in the solving the unsolved Problem.
3. Desire to get intellectual joy of doing some creative work.

4. Desire to be of service to Society.

5. Desire to get respectability

IMPORTANCE OF RESEARCH
"All progress is born of enquiry. Doubt is often better than overconfidence, for it leads to

enquiry & enquiry leads to investigation". Research has an important role in guiding social
plan. Knowledge of the society & the cultural behaviour of the people require proper planning
for their well development. Because knowledge & cultural behaviour of human being are
interdependent. A reliable knowledge is needed for planning & this is possible only through
research. Knowledge is a kind of power with which one can face the implication of a particular

Phenomenon. Research provides the basis for all govt policies in our economic system.

Research help us in making predictions. Eg. Chernobil Nuclear, nuclear plant disastrour,
Bhopal gas disastrour. Research is equally important in seeking answer to various social
problems In addition to this, the significance of research can be understood with the following

points.

ADDRESSING

Logical Address/

IP Address

Physical Address/
L——» | MAC Address

Overview of IPv4 Addressing Scheme

1) The identifier used in the network layer in the'Internet model to identify each device connected
to the Internet is called the Internet address or I[P Address.

1) IP address is 32 bits (IPv4) or 128 bits (IPv6).

1i1) It is represented by dotted decimal notation.

iv) IP Address is unique.
They are unique in the sense that each address defines one and only one connection to the
Internet. Two devices in the Internet can never have the same address at the same time.

V) The IP Addresses are universal in the sense that the addressing system must be accepted by
any host that wants to be connected to the Internet.

Notations

We use notations to show an [Pv4 address: binary notation and dotted-decimal notation.

Binary Notation

¢ In binary notation, the IPv4 address is displayed as 32 bits. Each octet is often referred to as a
byte. So it is common to hear an IPv4 address referred to as a 32-bit address or a 4-byte
address.

e The following is an example of an [Pv4 address in binary notation:

0111010110010101 00011101 00000010

Dotted-Decimal Notation

e To make the IPv4 address more compact and easier to read, Internet addresses are usually
written in decimal form with a decimal point (dot) separating the bytes. The following is the
dotted-decimal notation of the above address: 117.149.29.2

10000000 . 00001011 . 00000011 . 00011111
v v v v

128 .11 . 3 . 31

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

Questionl.

Change the following IPv4 addresses from binary notation to dotted-decimal notation.
a. 10000001 00001011 00001011 11101111

b. 11000001 10000011 00011011 11111111

Solution

We replace each group of 8 bits with its equivalent decimal number (see Appendix B) and add
dots for separation.

a. 129.11.11.239

b. 193.131.27.255

Question2.

Change the following IPv4 addresses from dotted-decimal notation to binary notation.
a. 111.56.45.78

b. 221.34.7.82

Solution

We replace each decimal number with its binary equivalent (see Appendix B).
a..01101111 00111000 00101101 01001110

b. 11011101 00100010 00000111 01010010

Question3.

Find the error, if any, in the following [Pv4 addresses.
a. 111.56.045.78

b. 221.34.7.8.20

c.75.45.301.14

d. 11100010.23.14.67

Solution

a. There must be no leading zero (045).

b. There can be no more than four numbers in‘an [Pv4 address.

c. Each number needs to be less than or equal to 255 (301 is outside this range).
d. A mixture of binary notation and dotted-decimal notation is not allowed.

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

Classful Addressing

e [Pv4 addressing when started a few decades ago, used the concept of classes. This architecture

is called classful addressing.

e In classful addressing, the address space is divided into five classes: A, B, C, D, and E. Each

class occupies some part of the address space.

e In mid 1990s, a new architecture, called classless addressing was introduced, which will

eventually supersede the original architecture.

Finding the classes in binary and dotted decimal notation.

First Second Third Fourth First Second Third Fourth

byte byte byte byte byte byte byte byte
ClassA [0 || i I | Class A | 0-127 || I | |
ClassB [10 || | H | Class B [128-191] || I |
Cssc [110 | I I | Class C [192-223])| I | |
Class D [1110 || | | | Class D |224-239]| | |
ClassE [1111 || Il I | Class E [240-255|| I | |

a. Binary notation b. Dotted-decimal notation

Class A Class B Class C Class D

Question4.

Find the class of each address.

a. 00000001 00001011 00001011 11101111

b. 11000001 10000011 00011011 11111111

c. 14.23.120.8

d.252.5.15.111

Solution

a. The first bit is 0. This is a class A address.

b. The first 2 bits are 1; the third bit is 0. This is a class C address.
c. The first byte is 14 (between 0 and 127); the class is A.

d. The first byte 1s 252 (between 240 and 255); the class is E.

Class E

Complied by: Anupam Mukherjee

contact: anupamsit@gmail.com

T here are two parts of an IP address:

e Network ID
e HostID

The various classes of networks specify additional or fewer octets to designate the network ID versus the host ID.

Class 1st Octet 2nd Octet 3rd Octet 4th Octet
Net ID Host ID

A - |

Net ID HostID

B I

Net ID Host ID

C I

D Multicast Address

E Reserve for Future use

Question5. Find the Network ID and Broadcast ID of different classes?
Answer.

For Class A Network

Network Id = X.0.0.0
Broadcast Id = X.255.255.255

For Class B Network

Network Id 2 X.X.0.0
Broadcast Id 2 X.X.255.255

For Class C Network

Network Id 2 X.X.X.0
Broadcast Id 2 X.X.X.255

Note : where X is variable ; X belongs to 0 to 127 for class A

Complied by: Anupam Mukherjee

contact: anupamsit@gmail.com

Note:
Class A

1*" address = 0.0.0.0
Last Address = 127.255.255.255

So, Maximum number of network = 128

Valid number of n/'w =2 126

Because, we can not assign first and last address in any host machine.
First address is used for identifying a n/w (known as network address)
And last address is used for broadcasting purpose.

Class B Class C Class D

1% address > 128.0.0.0 1*" address = 192.0.0.0 1°" address = 224.0.0.0

Last Address = 191.255.255.255 | Last Address = 223.255.255.255 | Last Address = 239.255.255.255
Maximum no. of n/w=>2!° Maximum no. of n/w—=>2%*

Maximum no. of Host>2'° Maximum no. of Host=>28

Class E

1*" address = 240.0.0.0
Last Address = 255.255.255.255

Network Address :
1) The network address is an address that defines the network itself.
1) It can not be assign to a host
iii) | Network address plays a very important role in classful addressing. A network address has several
properties —

a) All host bits are 0’s
b) Router can route a packet based on network address.
1v) In classful addressing; the network address is one that is assigned to the organization.

V) For network address =
Net id Host id

| Specific | AlLO’s |

Note : Network Address = Binary AND operation of (IP Address + Subnet Mask)
Eg. 192.168.10.0 = 192.168.10.45 + 255.255.255.0
11000000.10101000.00001010.00101101 —>192.168.10.45
I1111111.11111111.11111111.00000000 ->255.255.255.0

11000000.10101000.00001010.00000000 ->192.168.10.0

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

Question 6.
Find out the network address of 132.6.17.85?

Answer:
132.6.17.85 is a class B IP address. The first 2 bytes defines the netid. We can find the n/w address by replacing
the hosted bytes (17.85) with 0’s. Therefore, the network address is 132.6.0.0.

% When a router receives a packet with a destination address, it needs to route the packet. The routing is based on
the network address and sub-network address.

& the router outside the organization route the packet based on the network address; and the router inside the
organization routes the packet based on sub-network address.

Eg. When a parcel reaches in a post office, they are routed according to zip code. When they reach the post office
serving that zip code, the parcel are routed according to the street'address.

& Now the question is how can a router find the network address or subnetwork address?
A network administrator knows the network and sub-network address, but a router does not. A 32 bit number,
called mask is the key to solve this problem.

U the router outside the organization use a default mask,; the router inside the organization use a subnet mask.
When a router receives a 32 bit binary IP and mask values, it performs a binary AND operation on it, and the
result will be the desire network address.

Eg. 2>
192.168.10.2/24 11000000.10101000.00001010.00101101
TTT1 1111111 1111.11111111.00000000
11000000.10101000.00001010.00000000
192.168.10.0 = network address
Default Mask:

Although the length of the netid and hostid (in bits) is predetermined in classful addressing, we can also use a
mask (also called the default mask), a 32-bit number made of contiguous 1s followed by contiguous Os. The
masks for classes A, B, and C are shown in Table. The concept does not apply to classes D and E.

Class Binary Dotted-Decimal CIDR
A 11111111 00000000 00000000 00000000 255.0.00 18
B 11111111 11111111 00000000 00000000 255.255.00 16
C 11111111 11111111 11111111 00000000 255.255.255.0 124

The mask can help us to find the netid and the hostid. For example, the mask for a class A address has eight 1s,
which means the first 8 bits of any address in class A define the netid; the next 24 bits define the hostid. The last
column of Table shows the mask in the form /n where n can be 8, 16, or 24 in classful addressing. This notation is

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

7

also called slash notation or Classless Interdomain Routing (CIDR) notation. The notation is used in classless
addressing, which we will discuss later. We introduce it here because it can also be applied to classful addressing.

S ubnet Mask:

The number of 1’s in a subnetmask is more than the number of 1s in the corresponding default mask.
Eg. - for class B, default mask is /16

Default mask of class B> 255.255.0.0
= 11111111.11111111.00000000.00000000
Subnet mask - 255.255.224.0
= 11111111.11111111.11100000.00000000
e The number of subnets is determined by the number of extra 1°’s.
e If the number of extra 1 is n. then the number of subnet is 2"
e [f the number of subnet is N, then the number of extra 1’s is log,N.

S ubnetting:

e In subnetting, a network is divided into several smaller groups with each subnetwork (or subnet)
having its own subnetwork address.

e Often an organization needs to assemble the host into groups; the network needs to be divided into
several subnetworks.

e E.g. 2 A university may want to group its host according to departments. In this case the university
has one n/w address, but needs several subnetwork "addresses. The outside world knows the
organization by its n/w address. Inside the organization of each subnetwork is recognized by its
subnetwork address.

141.14.0.1 14114142 —oemeeme 141.14.14.254 141.14.64.1 141.14.642 - 141.14.64.254
CSE Dept >
€EE Dept
Subnet 141.14.0.12 141.14.64.9 Subnet
141.14.0.0 141.14.64.0
R2 R3
141141921 — | 141.14.192.254 141.14.1281 - 141.14.128.254
IT Dept > €ECE Dept
Subnet Subnet
141.14.192.0 141.14.192.4 /\ 141.14.128.0 141.14.128.0
R1

University > 141.14.0.0 (Network address)

- e — e—— e e e e e e— — S S EEEE BN NN NN EE EEE BN B B B B B e B B e .

Rest of the Internet

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

S upernetting

The time came when most of the class A and class B addresses were depleted; however, there was still a huge
demand for midsize blocks. The size of a class C block with a maximum number of 256 addresses did not satisfy
the needs of most organizations. Even a midsize organization needed more addresses. One solution was
supernetting. In supernetting, an organization can combine several class C blocks to create a larger range of
addresses. In other words, several networks are combined to create a super- network or a supernet. An
organization can apply for a set of class C blocks instead of just one. For example, an organization that needs
1000 addresses can be granted four contiguous class C blocks. The organization can‘then use these addresses to
create one supernetwork. Supernetting decreases the number of 1 s in the mask. For example, if an organization is
given four class C addresses, the mask changes from/24 to/22. We will see that classless addressing eliminated
the need for supernetting.

Question7: What is the difference between IP address and MAC address?
Answer.

IP Address MAC Address

1. It is logical address. 1. It is physical address.
2. IP address is dynamic. 2. MAC address is Static.

3. IPv4 is 32 bits, and IPv6 is 128 bits. 3. MAC address is 48 bits.

4. IP address is represented by dotted decimal jj4. . MAC address is represented by dotted

notation. hexadecimal notation.
5. It is user define address. 5. It is manufacturing address.

6. It is classify into 5 classes. 6. No such type of classification.
1.e. class A, class B, class C, class D;class E

7. Each 1P address has two parts. Netid and hosted. [7. No such type of division present in MAC address.

Note:

F ormula to determine number of hosts on a given network

* Given that there are N host bits in an address, the number of hosts for that network is 2N 2. Two addresses are
subtracted for the network address and the broadcast address.

* 8 host bits: 28 -2 =254 hosts
« 16 host bits: 210 - 2 = 65534 hosts
« 24 host bits: 224 - 2 = 16777214 hosts

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

Q{> P ublic IP and Private IP addresses

Public IP Address:

* Most IP addresses are public addresses. Public addresses are registered as belonging to a specific organization.

* Internet Service Providers (ISP) and extremely large organizations obtain blocks of public addresses from the
IANA (Internet Assigned Numbers Authority). Other organizations obtain public addresses from their ISPs.

* Public IP addresses are routed across the Internet, so that hosts with public addresses may freely communicate
with one another globally.

* No organization is permitted use public addresses that are not registered with that organization!

Private IP Address:

* The following are private addresses.

— Class A range: 10.0.0.0 through 10.255.255.255.

— Class B range: 172.16.0.0 through 172.31.255.255.

— Class C range: 192.168.0.0 through 192.168.255.255.

* Private addresses may be used by any organization, without any requirement for registration.

* Because private addresses are ambiguous - can’t tell where they’re.coming from or going to because anyone can
use them - private addresses are not permitted to be routed across the Internet.

* ISPs block private addresses from being routed across their infrastructure.

* Note: The use of private addresses, network address translation (NAT), and proxy servers solved the IP address
shortage problem for the short and medium terms.

%Reserved addresses

> 0.0.0.0 is the default IP address, and it is used to specify a default route.
The default route will be discussed later (routing section).

> Addresses beginning with 127 are reserved for internal loopback addresses.
It is common to see 127.0:0.1 used as the internal loopback address on many devices.

Try pinging this address on a PC or Unix station.

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

http://www.iana.org/

10

IP Datagram

What is Datagram?

» Packets in the network layer are called Datagram.

» A datagram is a variable length packet consisting of two parts-----
I) Header
II) Data

*** the header is 20 — 60 bytes in length and contains information essential to routing and delivery.

IP datagram frame format

20-65,536 bytes

>l

20-60 bytes

h Header Data

Y

VER | HLEN DS Total length
4 bits | 4 bits 8 bits 16 bits
Identification Flags Fragmentation offset
16 bits 3 bits 13 bits
Time to live Protocol Header checksum
8 bits 8 bits 16 bits

Source IP address

Destination IP address

Option

* VER (version) : - This 4bits field defines, which version of IP address we used (IPv4 or IPv6)
 HLEN (Header Length):- This field defines the header length, which is variable (20 — 60 bytes)

» DS (Differentiate Services):- This field defines the different service type.

D: Minimize delay R: Maximize rehability
T: Maximize throughput C: Minimize cost
TR EIEEENE
Precedence TOS bits
Service type

In this interpretation, the first 3 bits are called precedence bits. The next 4 bits are called type of service
(TOS) bits, and the last bit is not used.

a. Precedence is a 3-bit subfield ranging from 0 (000 in binary) to 7 (111 in binary). The precedence
defines the priority of the datagram in issues such as congestion. If a router is congested and needs
to discard some datagram’s, those datagram’s with lowest precedence are discarded first. Some
datagram’s in the Internet are more important than others. For example, a datagram used for

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

11

network management is much more urgent and important than a datagram containing optional
information for a group.

b. TOS bits is a 4-bit subfield with each bit having a special meaning. Although a bit can be either 0
or 1, one and only one of the bits can have the value of 1 in each datagram. The bit patterns and
their interpretations are given in diagram bellow. With only 1 bit set at a time, we can have five
different types of services.

TOSEM‘A T Description
0000 Normal (default)
0001 Minimize cost
0010 Maximize reliability
0100 Maximize throughput
1000 Minimize delay

* Total Length :- This field defines the total length (header + Data) of the I[P Datagram in bytes.
Length of the IP datagram is limited to 6553542'°-1) bytes.

» Identification:- This field is required to set an identification number to each Datagram.

» Flags:- This is a 3-bit field. The first bit is reserved. The second bit is called the do not fragment bit. If its
value is 1, the machine must not fragment the datagram. If its value is 0, the datagram can be fragmented
if necessary. The third bit is called the more fragment bit. If its value is 1, it means the datagram is not the
last fragment; there are more fragments after this one. If its value is 0, it means this is the last or only
fragment.

Flags used in fragmentation

D: Do not fragment
M: More fragments

* Fragmentation offset: This 13-bit field shows the relative position of this fragment with respect to the

whole datagram. It is the offset of the data in the original datagram measured in units of 8 bytes. Figure
(bellow) shows a datagram with a data size of 4000 bytes fragmented into three fragments.
The bytes in the original datagram are numbered 0 to 3999. The first fragment carries bytes 0 to 1399. The
offset for this datagram is 0/8 = 0. The second fragment carries bytes 1400 to 2799; the offset value for
this fragment is 1400/8 = 175. Finally, the third fragment carries bytes 2800 to 3999. The offset value for
this fragment is 2800/8 = 350.

MIT || Offset=0/8=0

1399

T [] Offset = 1400/8 = 175
1400 2799

[TT] -« [] Offset = 2800/8 = 350

2800 3999

Offset =0/8=0
L1 |
4 i

Byte 0 Byte 3999

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

12

I 1420
14,567 [J1]_000
[
[820
Bytes 0000-1399 14567 1T 175
Fragment 1 I
= | ITON [1 400
14,567 o000 1420
T 14567 | [T 175 Bytes 1400-2199
I Fragment 2.1
[620
Bytes 0000-3999 Bytes 1400-2799 “LIS'” [It 275
Fr.agmcntz
Original datagram
I 530 Bytes 2200-2799
14,567 [To[350 Fragment 2.2
[
Bytes 2800-3999
Fragment 3

* Time to live:- Time to live is a limit on the period of time or number of iterations or transmission in
computer and n/w technology that a unit of data (Eg. Packet) can experience before it should discarded.
Or this field is used to control the maximum number of hops (routers) visited by the datagram.

* Protocol:- This field defines the higher-level protocol that uses the service of the IP layer. An IP datagram
can encapsulate data from several higher level protocols. Such as TCP, UDP, ICMP. This field defines the
final destination protocol to which the IP datagram should be delivered.

* The IP multiplexed and demultiplexed data from different higher level protocols.

Value protocol
1 ICMP

2 IGMP

6 TCP

17 UDP

89 OSPF

Transport leyer

ICP | | UDP

\ /

ICMP

Network layer

Header

TGP \ / OSTF
AN
\V/

Complied by: Anupam Mukherjee

contact: anupamsit@gmail.com

13

* Checksum:- Checksum field is used for error detection purpose in IP datagram. The header of IP packets
changes with each visited router, but data do not. So, the checksum include only the part that has changed.

« Source Address:- This field defines the 'source IP address, and this field remain unchanged during the

4 | 5] o0 28
1 0 | 0
4 | 17 0
10.12.14.5
12.6.7.9

4, 5, and 0 —> 0100010100000000
28 —> 0000000000011100

1 — 0000000000000001

0 and 0 —> 0000000000000000

4 and 17 — 0000010000010001

0 — 0000000000000000

10.12 —> 0000101000001100

14.5 — 0000111000000101

12.6 —> 0000110000000110

7.9 —> 0000011100001001

Sum —> 0111010001001110
Checksum — 1000101110110001—

time the IP datagram travels from source host to destination host.

« Destination address:- This field defines the IP address of the destination

« Options:- As name implies, are not required for every datagram. They are used for network testing and

debugging.

IP datagram

U

MTU

(B Maximum length of data to be encapsulated in a frame

Trailer

Frame

Complied by: Anupam Mukherjee

contact: anupamsit@gmail.com

Basics of electricity

M.R.Chakraborty

Department of EE
Siliguri Institute of Technology

Prepared by M.R.Chakraborty

O u t I I n e Not for distribution without permission

24 About electricity)

LA
4 A4

I
e PR

N . Prepared by M.R.Chakraborty
44> About electricity J Not for distribution without permission

Electrical energy Is a secondary energy source
and also referred to as an energy carrier.

Electrical energy has the following advantages over all other forms (chemical, heat, light
& mechanical) of energy

Cheapness

Convenient & efficient transmission

Easy control

Cleanliness

Greater flexibility — as it can be taken to any corner of the house, factory etc.

S ok w e

Utilization in versatile form

\ . Prepared by M.R.Chakraborty
%_‘ About electricity J Not for distribution without permission

Free electrons

Direction of conventional current flow By definition electric current is the rate of flow of charge through a
medium subjected to an external influence. Mathematically

— | Q
—— t
Direction of electron flow
Where,
'|'||' | = Average current flow through the medium
Q = Charge
External source t= time

Definition of Ampere: When a charge of one coulomb passes through a medium in one second, the medium is said to
be carrying a current of one Ampere

As 1 coulomb is equal t06.24x10" number of electrons, so 1 Ampere means flow of 6.24x10"
number of electrons

o Prepared by M.R.Chakraborty
é » About electricity) Not for distribution without permission

Electric current is divided into two types:
* Directional Current (DC)
« Alternating Current (AC)

Directional (Direct) Current
A non-varying, unidirectional electric current (Example: Current produced by batteries)

current |

or -+
voltage
0 -

time

Characteristics:

e Direction of the flow of positive and negative charges does not change with time
e Direction of current (direction of flow for positive charges) is constant with time
e Potential difference (voltage) between two points of the circuit does not change polarity with time

N . Prepared by M.R.Chakraborty
44> About electricity J Not for distribution without permission

Alternating Current

A current which reverses in regularly recurring intervals of time and which has alternately positive and
negative values, and occurring a specified number of times per second.

(Example: Household electricity produced by generators, Electricity supplied by utilities.)

current $

ar -+
voltage

0

time

Characteristics:

e Direction of the current reverses periodically with time
e \/oltage (tension) between two points of the circuit changes polarity with time.
e In 50 cycles AC, current reverses direction 100 times a second (two times during one cycle)

Prepared by M.R.Chakraborty

\ \
2 ; Not for distribution without permission

Ohm’s law

The potential difference (V) between any two points of a conductor is directly proportional to the current (1)
flowing through the conductor provided temperature and all other physical quantities (e.g. length, cross —
sectional area etc.) remain unchanged.

Mathematically we can write, \/ ¢x |

or, V=RI
R is the constant of proportionality & termed as 'Resistance’

Resistance is the property of a material by virtue of which it opposes the flow of electrons through it. The unit of
Resistance is “ohm” (Q).

From Ohm's Law R :\IL
ForV=1Wlt & I=1Amp
R=1 ohm

Thus 1 ohm is defined as the amount of resistance which opposes a flow of 1 amp current through a conductor
when the potential difference across the conductor is 1 Volt.

N > . Prepared by M.R.Chakraborty
21 ,Laws of Resistance / Not for distribution without permission

@ Resistance of a conductor is directly proportional to its length (I) in the direction of the current flow.
@ Resistance of a conductor Is inversely proportional to its cross-sectional area (A) perpendicular to the
direction of flow of current

4

/?_‘ 1 —’
Direction of

I s current flowy
. I
Thus fromtheabove R o | Combining the two we get R« N
1 I
and R o« ~ or, RZPZ

Where p’ Is the proportionality constant & is called resistivity or specific resistance of the conductor.
If R =1o0hm, | =1meter, A=1sq meter, Then, p =1 ohm-meter ===== So unit of resistivity is ohm-meter.
Again, if | =1 meterand A= 1 meter?, ThenR = p

So specific resistance or resistivity of a material is defined as the value of resistance between two opposite faces of a
cube of that material with a dimension of (1 m) x (1 m) x (1 m). 8

— | Prepared by M.R.Chakraborty
A S
2.2 < Conductance and COﬂdUCtIVIty ~/ Not for distribution without permission

Conductance is the reciprocal of Resistance.

. V

From ohm’s law the current through a conductor is given by | = =
1
Or, |1=GV, Where G)

The parameter ‘G’ is called conductance of the conductor and it is reciprocal of resistance R. Conductance

Is the measurement of inducement which it offers to its flow but resistance is the measurement of opposition
which it offers to the flow of current.

Unit of conductance is Siemens or mho.

Again, from the laws of resistance, R=p. ”
1 [
Or —=p—
G 4 The parameter ‘s’ is called conductivity.
1 4 4 It is reciprocal of resistivity.
Or, G= e o Unit of conductivity is Siemens/meter.

9

N . — . Prepared by M.R.Chakraborty
2.3) Temperature co-efficient of Resistance / Not for distribution without permission
The ratio of change in resistance per ©C and the resistance at the reference temperature is called temperature
co-efficient of resistance (o) of a material.

Let, R, = resistance at t,°C
R, = resistance at t,°C
o, = temp coefficient of resistance att,°C 7/~ R, = R;(1+at) [where, t=1t, 1]
a, = temp coefficient of resistance at t,°C

Generally reference or base temp is taken as 0°C.
Let, a, = temp coefficient of resistance at base temp 0°C
R, = resistance of base / reference temp of 0°C R, =R, (1+ a,t)
R, = resistance of the material at any temp t°C
Similarly we can say, 0O, = 0, (1+ 050'[) R —-R,
o Temp co-efficient of resistance is given by &, = R
Also we can arrive at @, = — 0
1+ a,t

I. positive for metallic conductors

Temp. co-efficient of resistance is -[Il. negative for carbon, electrolytes, semiconductors, insulators
1. negligibly small for alloys like eureka, manganese, nickel chromium, constantan etc.

Prepared by M.R.Chakraborty

=31 ¢Resistance in Circuits - Series connection) Not for distribution without permission

When the resistances are connected in series:
 Current through equivalent resistance R, is equal to the current through each of the original resistors (all have

same current).

e \oltage across the equivalent resistance R, Is the sum of the voltages over the original resistors.

>
From figure, V=V, +V,+V,;+V, I
Or, IR = IRy + IR, + IR; + IR, R =V,
[Where, 'R" is the equivalent resistance of the circuit] , R, <V, V] =1
—_— dq
—_ v,
o, Ry =R; +R,+R; + R, - R, =V,
R, =V,
o, Loty
" Geq Gi Gz Gz Gy

Criterion of series circuit i

\V2

V.

Same amount of current should flow through all the elements of the circuit.
Individual resistors have their individual voltage drops.

Nature of voltage drops are additive.

Summation of all voltage drops must equal to the supply voltage.
Resistances are additive.

Prepared by M.R.Chakraborty

8.2 ~Resistance in Circuits - Parallel connection) Not for distribution without permission

When the resistances are connected in parallel:

e The individual resistors have the same voltage as the single equivalent resistor.

e The current through the equivalent resistor is the sum of the currents through the individual resistors.
e [ndividual voltages and currents can be recovered using Ohm’s law or current division.

From figure, | = 1, + |, {
£ ifﬂ
vV 'V V
o, 1oy
Req Rl R2 — El EE
[Where, ' R, " Is the equivalent resistance of the circuit] T
or 1 1 1
’ Req Ry +R2 In terms of conductance the equivalent conductance willbe G, = G; + G,

I. Same potential difference is applied across all the resistances
Criterion of parallel circuit < ji. Different resistances have their individual currents
1. Conductances are additive.

12

Prepared by M.R.Chakraborty

“uel Basic quantities: Potential & potential difference) Not for distribution without permission

The amount of work done to move a unit charged particle from a reference
point to a designated point in a static electric field is called potential.

The difference In electric potential between two points in an electric field is
called potential difference.

It IS measured In volts.

13

. — Prepared by M.R.Chakraborty
N : |
m Basic quantities: Work J Not for distribution without permission

In an electric circuit, current flows through a conductor when potential difference is applied
to it i.e. some work iIs done. So we can say that whenever there is transfer of charge,

some electric work Is done.
Electric work is given by, W =VQ = VIt

Where, V = potential (volt)
Q = charge (coulomb)
| = current (amp)
t = time (sec)

The unit of electrical work i1s Joule.

14

. — x Prepared by M.R.Chakraborty
N :
m Basic quantities: Power) Not for distribution without permission

The rate at which electric work is performed is called electric power.

amount of work done W VIt

time to do the work t t =Vl

It is given by, P=

The unit of electric power is Watt.

15

— . — Prepared by M.R.Chakraborty
m/ Basic quantities: Energy / Not for distribution without permission

Total amount of electric work done in a certain period of time is called electric energy.
It is given by, E = powerxtime =Pxt=VIt

The unit is watt-sec. But watt-sec unit is very small if we think of the amount of electric
energy consumed. So we use bigger unit like K\Wh.

1KWh = 1000 Wh = 1000 x 3600 watt-sec = 36 x 10° watt-sec.

16

Prepared by M.R.Chakraborty
Not for distribution without permission
Electricity Magnetism
1L ELES BC624~546 | Triboelectric effect

1540-1603
1670~1736 | Division of conductor and insulator magnetic field of the Earth

1698~1739 | Electric fluid (vitreous and resinous fluid)

SRS 1706~1790 | Electric charge and conservation of charge

CEIVERIMN 1737~1798 | Biological electricity

1736~1806 | Electrostatic force

1745~1827 | Chemical electricity, battery

WAL 1777~1851 | Magnetic phenomenon induced from the electric wire

1775~1836 | Magnetic field

= ELEVAN 1791~1867 | Electromagnetic induction

FEVATEIM 1831~1879 | Electromagnetic field

1887-1975 | Electromagnetic wave

1856~1944 | Alternative generator, wireless communication

17

SHECEIM 1879-1955 | Photoelectric effect

. : Prepared by M.R.Chakraborty
i Numerical) Not for distribution without permission

1. The resistance temperature co-efficient of aluminium at 0°C is 0.0045

per °C. Find the co-efficient for a temperature of 30° C.
Solution:

We know that.

24

a, =
1+ a,t

Here a, =0.0045.71=30"

a, 0.0045

= =0.00396
1+a,x30 1+0.0045x 30

Therefore, a,, =

18

26> Numerical

| Prepared by M.R.Chakraborty
) Not for distribution without permission

2. A conductor has a resistance of 10 ohm at 20° C. At 50° C its resistance increases

to 14 ohm. Determine the temperature co-efficient of the conductor at 0° C.

1 —]

Solution:

We know that.
Ry=Ry (1+ oot

Here.
R, =10Q
R,, =140

Therefore.

R, =R,(1+a, x20)=10
R, =R,(1+a,x50)=14

1+ e, x20 10

T 1+a,x50 14
or,10+500¢, =14+ 280«
or,220a, =4

or, a, = % ~0.0182/°C

19

. _ Prepared by M.R.Chakraborty
D .‘
&/_ Numerical / Not for distribution without permission

3. Determine the resistance across ‘ab’ for the circuit shown in the figure.

Solution:
d
é This is a series-parallel combination of resistances.
11
. 1x1
The resistance across de, R, =——=0.5Q
1+1
Ci ;
g The resistance R, Is in series with R_.
110 ,
] 1o So, the resistance, R +R, =1+0.5=1.50
Now, the total resistance across ce, R = 1.5x1 — 1.5 =0.6Q
=14 %m 15+1 25
b

But this resistance R, is in series with R_.

So the resistance across ab is given by,

R,=R.+R,=1+0.6=1.6Q

20

. .. Prepared by M.R.Chakraborty
EASS ignment) Not for distribution without permission

1. The current flowing In a circuit containing four resistors connected in seriesis | =
2 Amp. The potential drops across the first, second and third resistors are,

respectively: V, = 8 V, V, = 10V and V,= 6V. The equivalent resistance of the
circuitis R = 30 Q.

Find the total voltage supplied by the battery and also current, voltage drop, and
resistance of each resistor in the circuit.

21

— . \ Prepared by M.R.Chakraborty
&ASS 'Q nment :) Not for distribution without permission

2. FiInd the equivalent resistance of the circuit shown.

& B

22

2 > . . | Prepared by M.R.Chakraborty
- < Solution of assignment J Not for distribution without permission

1. The current flowing in a circuit containing four resistors connected in series is | = 2 Amp. The potential drops across the
first, second and third resistors are, respectively: V, =8V, V,= 10V and V,;= 6V. The equivalent resistance of the circuit
ISR =30 «.

Find the total voltage supplied by the battery and also current, voltage drop, and resistance of each resistor in the circuit.

Solution:

As the resistors are in series, so the current flow through each resistance is same.

Using the Ohm's Law, we can find the resistances of the first, second and third resistors.

V, 8 As it is a series circuit, so the equivalent resistance is the sum of the individual resistances.
Ry = 1 = 2 = 4} Req =R; + Rz +R3 + Ry The current flowing through R, is also 2A as it is a
V 10 _ B eries circuit.
R, = 2 ="_"=150 O, Ry = Req = (R + Rz + R3) Using Ohm's Law again, we can find the voltage
\I/ é or,Ry =30 — (4 + 5+ 3) = 18Qfcross R, as below.
3
Ry =7 =5 =30 V, =IR, =2 x 18 =36V

Therefore, total voltage V=V, + V,+ V;+V,=8+10+6+36 = 60 V

23

> . . Prepared by M.R.Chakraborty
&/ Solution of assi gnment / Not for distribution without permission

2. FiInd the equivalent resistance of the circuit shown.

2 E C
i}
on: 25
Solution: o 0 ‘o
Equivalent resistance Ry, = Rar || Rge || Rep iR Zal
L .,
From the circuit given, - - $

Rge = (2+3) 1 =5 Q (as it is a series connection)

R —4(2+8)—410—4X10
co = 4| =410 =770

= 2.86()

Therefore, R, = Rar || Rge [| Rep=(8 || 5 1] 2.86) 2 =1.48 Q

24

o g oA W N

Prepared by M.R.Chakraborty
Not for distribution without permission

Sample questions

. What do you mean by current? What is charge? Explain the relationship between

charge and current.

. Write down the classification of current. Explain in brief.

Discuss the differences between a.c. and d.c.
Explain Ohm’s law. Define resistance from it.

. What do you mean by resistance? Name the factors affecting resistance.
. What do you understand by resistivity, temperature co-efficient of resistance and

conductivity.

25

Prepared by M.R.Chakraborty
Not for distribution without permission

e

Confused how to
judge that?

26

Prepared by M.R.Chakraborty
Not for distribution without permission

How to Conduct a self-check on learning

Did | understand all the topics discussed in the class? }

Did | understand the concepts clearly?

Can | apply the theoretical knowledge acquired in practical field?

Am | able to solve the numerical problems related to the topics? }

27

Prepared by M.R.Chakraborty
Not for distribution without permission

Congratulations !

You are on correct path of learning.

28

Don't hesitate to

There Is no alternate of studying books.......

Go through your book to know more about it.

i Prepared by M.R.Chakraborty
= Not for distribution without permission

Thank you

o N

kb (ﬁfk_.; (m;»‘;l .
Eriatusls fo o formt. of emetie ?Nd_a . ?mw&;:
Jeme B e P\w.\a bt Q“Pmeommg o
stasl or.
0. et v O
£pf % Pa_am. fudex szass O “P— W&’&?M@é

T Qudh. ome. geme. Supresiacs Hue enf
H’Mﬁ‘m g e Wima; " ?&WM)W‘L
e guprosacd. gene. 75 cold 1o &2 wegpoBtiC

(AT ':1"_:‘
r&asl o) —
[U™

3 ’ -~ =
) ~ » ™ AL =
z%’*?ﬂ elem Qe lootreeem - ¥0 _ng?_@f} Lo, purer. P

-_—

a5

0 rPe e V-
Wk Ok prh (0 444 Bprauc
Pontoncarille”

. ?) 2wolve s ‘fcwtw’zéalwlf’d.

T Tmvolres drea— allelie - | ‘
Yene. domeAfom. [gm.Woap.

% Ome. ol Wids-m Fhe > one. geme- 1T .
e cot-oy-otuen- altele— . effeat-af ooz ML
O~ Hug Same. Goue- ASHexend— quue loct:

po¥z. " { 8 |

i Dy e clonumand allele. (og -, oF Jae-
a{;awm' Qome o '@8.83 omd. enpres

T i A e fous
S The. Bodlele CW%*@ el Q‘”‘)) M@ wt
ST gouotyfe AABE oo Ao Bl ol MRl o7 fa kb produee
e Same. puenotype ‘ |

> (emotyre oaBB 6% o Bb amd. A&kb produes fwo addio
lPWﬁ{l@.

Scanne d with CamScanner

Teg UPQ ‘é) C\Om?man\} eplatos’s mod?—ﬁ’e,& he alasgfasl readi0
% 97815:) tnio 18190

QD_ kb b
ab_
| BB, Bh B
A, R Bb, Bk, bb A
Exameple —
Sl

~ Pwe leed? te -Pm-l-eék AN
e do @W veruety 1a cwsaed ‘H/L
S whle Ve Groom. v %@ %b‘g&‘ Cedl

M%#MWQW 1
gone (epTattn éﬁgb ¥ ed ey e dowidnank
PP WYX o%a WE Wy WY |
C&W@ C_aé—g{,\) NG ‘m wrg\/ e %E
wa / wwy wwja WY »Siféi

(cuw%@ | epdte s

e wifte. & Yellow! Greun ™\ WY WW{Z w%*ﬂde

(wlite |eudte yellow
la v gyl

Wd \]wYA Wwda ww\fa- WWCLS\&

;Lu“ff/ (u}ag-}tﬁu”w - Pream

Fy .

Scanne d with CamScanner

%
i

™ W\&gpﬁ’&mﬁ’é (%:3:4)» RopessPe. opfstarl’d oaeund aham. ‘
g nelegsfie. alletes off Ome gane- (08LE Cag\, 4(,4,9.9{)?&}&4’& L(Xl@
&Llf?lf%b e pue P euf%&%%rﬂ. O\f_,me ollole s - Mofu%a:'@.
(88, &b on-bb allelisy) . TuPs -{-ape oft epfetests Py called, rxasgsive.
eplstasds.

Uz Lot us quess , -he Lowe. fugmép?a elosed eorvuspomd
404“0"8{ {)Q’ A-— B—-_) A-—bbgME)-—-DCUP\A mgf’yze?ﬂ@z- .
%P‘“‘“— ome. »sj’m(ﬂ M@m«o,;aaowﬁ 720, (.3 55VC. gemo pe. (f.e A-bbotz
aa® Huag Hie. same. plemciype. ab tue doukle moﬁa«ﬁufa |
netesstue. (aabl), fan_ o, 9} 314 puanotype. xaffo wifllag, Oblaind.

tz fop ot - futte. labpadon. Rebdover. breed of d@%/g e B
eMeodes o Yotz am. fmportanCe. sdep fin e preodueifom
0 guelanlPo Tie. Aomlvamdoliele , B P& more. %QF@"M:{L\/?;’}’

74

P%MML.L preociafon. o e nedgsfie. b oltele., thus B
appeans ok, cad by appeatd s - A seepud. (ocub,

) INIIN C@LQE‘WQOU- £, aopdrols | E‘LQ.C‘.Q{DOE?‘H%M_—-O'Q wglomIon fo

e hafus” A Last ome JumeHomal £ dllele £5 wayfred Yo
copostic. PRanuendt (uleather, B P kloex o7 ktowen- . T,
Al rzchvitoverrd tuod- Ve ee- fail 40 d,e,{aozxﬂ a Meol o

(and 0 appeay. pale HellouD, %mﬁ@mfl% A . gemotyfe-
o -t Bloous. - |

The. ce. 8W<m Moo g% o be. epfatet. o hoth
He B amd. b . Bim0e. Hie L&omzﬁ Cc‘]t@u% ce. Puewﬂ%ff&’/mﬁﬁé
“lte. puemolype of e B (peus - Tue B/b locus 7% Aald fo he .
_f\dﬁf)_f_‘ufd'a{—?)(i_‘-lo Hee eo. é]CMO\iJP(é“. Be eartdy et muasktro| ollolo_
6 I HPE onde Pg nedossive. ,Wls & aallo d. mev%zj(é&

ePEiasts .
@Do m X E‘@

Bladr :jgugm(_{éale eliou?y

(mo Pramenmd
Fy domordiom - \/ g)

‘\waa ' L@’?—{,ﬂ
0 CRLBeH)

D & B

Scanne d with CamScanner

F GE B bE be .
-L mmo [U (S i »,,\, S
c&‘a\im ‘ BE eBrr. |Pere. | BbLE) Bhie
| Qoew [ity | Blat | Blaes

SR

B- Plagys B e et
T MBEe | PRee. [PbEe | Bbe
e, b | s [e | v
Jelous - L | QbEE [BhEe | bbEE bbEe
\3: 3‘,.,%] b'mf_’,w oo bt .| la/To i

Bose oo — @ @ 0—g—71"

be | Boke | Bbee| bife |bben

Ejlﬂﬁ"\’ \/fU 200y k’(;'.}. o ‘(/[:f/';: ue -

0 Do, Reossi
homes 2. GW@—@_&J& ot gemo. oa? have_

OO Plonstype g o 004 bW of diom. produce.
o %ﬁ’e %QWF&W"O 2733 L eowld kgoys 2,
J BB, coBb, ABkb, Aokb amd aaf Produg,
Q.
Picsemy- %LP Rolw. domPmomd- alieles ademe e,

0geton. Omtat fuem |
U Qam- @ oo memd
o e
(4 — -

j’t‘f’/‘& Oadlo. A\‘ J
‘H(.C, 'Ea”'\@;{-PO 2l e CDALLPLQ_W% -
PROCILLML;(» : d oy Mdﬁmz +o Produag o Bl

o Grouny Yol ro-

: L@LWGQQ(L 0
a_ QO(*@?Z«(QSC& M’w m.'{’L(,L(.CCL FoL CM—LL%L
o f oo @1@(’ =
Qé\ L’Q(,&j ‘H(.O_. a

(0 ges
ColoTzleny deme A _y Qolor, (32 Qe 13 Purplo
GGW\POL‘MA C,Ofm/POUMA I ;’i"‘}m@;\i—

(

iy shvpLifred. pot SlhowP

€onploand
Qome. Oedfrn. oL A andR WW&

Scanned with CamScanner

Fi Qemecedio: Aﬂk\bl
44 e (awAe. -) Ejuﬁ%fa. 1
—ﬁﬂoi“i“/-ﬁwwm@
Cszpw— Colo |
e/‘a %u@
Fq W%om / L \
o 91 /8 L= (Bllse

(aplo i g | pARE | AP Aaee [hap |

: Puplo. | puweple.| purple . Purple. .|
1o |AABL | ARbL | AaBo | Rabb
Pufde| wudte| Pwfle | cudtol

AoBR | RoBb | AABB | anBb

i pusplo_ | puaple. | (edte Gudte
Mo | AnRb | hakb | 0alb | asbb l
e

P U.‘lf,{p__ utte alPre \ [LC,U«‘Qf'

eolons .

e Q20 , v K . .
¥ l‘ 3 %_, mﬂzﬁ W[g&él PF@MM}’ ﬂ,lﬂLPiW
éam%&z/ C'JAO/V%Q——
eomplefo .

o, S 0ase. domdinand- allebed om hott (ocusy, o swoyuiied

hemle. (utestown., A and B ol o, Pruedonct- -]Lc(egj sresuld trnde
Puapl- eHeei muobning Jue coudio . :

") buplicate. Domfnamt Gome. (1570 5 e, Jomtrand aiteleg o}

kot tue geme. preduce. e, ame. PL(LMQ{*[{)((: Mmjﬂt’w 1% flee-
Aek(6) 16\

Im ’wa Cane. ol leas: " Ome. C‘() o riomdmam} C\LQUL
V6 m(’('oww? for, tue. Pum(cr((tjpf’a ffoop o, d ANBE, haBh,
Rl aaq by s aodib fjﬂ() one, Plemof ﬂ’g

T L S —————— j

Scanned with CamScanner

Tn . abaomeo . of- cul fre. dhooufnand-Gone (oaby fo ase. O‘CQO_
aabb_) e 1o, palve Pw*&j{)& acPll kg eufy - md"‘f)u@fe
one-cne abo oated. paedoalleles .

Yer, ampHz Prg memtedHom. wwot@jx HPS asc,
T cunend, proviles am enample. o tubs duptidate Geme a2tion
e blogyatiesfs ol sied, prgauent neoon. e snfese of Gt
Soed s Prvowesd Anan Feme, o of. coufol we @l %D/C,LAC
e B, Noraual, e 00 sz,ahc'ory\,%? Yo ook geed Fg amaivdam
AP fametfon. of- efruo of fuse Jemes Po ok fin omg,
awkomd— (e.a v efien. an B—, oy A —blp)- Oy Heo
Teassive. puctanck (@) | ceolifan. (owr & #‘m‘;\@a\. A ko

Jeme s, Sroues O PLW“‘@PQ Hiod- 'C{L?EH@-(/@ Prom Hwad Preadug,
Y an f-the ot gerstybes. h e somable. Wterpeetetfon
MHPE sl 16 Htou- kot geme. emeodog Yo 8 Ome
Wiologiuar. fumetfom, amd. eftter. ouwe aloue 4 dbiofont-
672 tie. mermal a@j‘?v?‘l’a % Jtoy poqw;aéﬁ _

5&6 CM) \7‘/ *CC@@O’@T)'
15 (Re) T
Fo poQe
A Y. [) o) g
AR A@ﬁb//\ﬂnb AaBR
fy gouoratfon~ - y
T o > Al |ANB | ARG
L g, o Red | Red [Red
) ' (v!€
R(f . (e T ap | abp halpl,
15 i leed | ke |
o | halds | Rakb} ABab | ankl,
Ped, e,

Scanne d with CamScanner

v

e

PO% ot geme. ?MW@_#O‘IL_@ '@y Two cl@rM?W olleles,

hawe. studlae. €eat- m%&d oe acporocte, put Produds
amemneod %?e@- Goteom % comme. J@W.@L@ua@r@

oM T8 Ko wm A% g . que. Oy HOMm . Tuo_

Tofmteffeat af due altelos dppesta 1o ke addife. ez

W\/&’ QU 08 A 41y 40 gene. guous aomplete. dosd
. Wemao Canmor! bo @omefiorodd as 9.;{40,45’\/‘2@0‘%~

Im ease o8- gl dl

Lz A well Visewm - gsapuplo. o Wﬁwnf@ Qenc

@ ook, gene suow (ot o Aonufuonte

Tutoraetfon. 76 Lrerk Aucpe. P, Stumez. Apuadh . Tuese e,
e A4PeR of Pl Slape s pload V2, dPses Sphod

b cond (o e df s Alape P& Qondollod {Q{j e Ao

ot fenio.s CRand B, 4e gplecaol suape P4 Produted,

U7, Aopulromd cllelo. [ﬂ (8)rd B_> aud (Qlfﬁ &LW{PED‘L '{:?‘u?{é
2

OLQV@LQP . doukle. 7zeaesssve (aabb) Ploit 3

(=}

¢

p OOYe botwewem. At glope (AARR) ond Lo &M{Q@a@

Snafd procudo. Lise Sukape. {muc?’é T Fi. Tadels - modting
Py Plomts produted. plmdd cuPii. APsa, 2puodal., aud
Bhage fuulhs fn 5t 67 L wodfo b Fa ,ubg com be explal

ad Hollous —

Fy pnoge [Anee] [aobt)
4 Pneg Aﬁ* CQ}Of}(: 81}!%6 wﬂk i L:;vﬁ Ziga(‘e

[Aa% (pyae. Suope
_d) . A ' x B N ,P)u,:,ﬂ)\

m o @

Scanne d with CamScanner

%

Fa. Qemeced fom b
S N
RI6E ¢ sphorfeal lom AB ARGB
B e G ¢ 1. 6 B ;)Fod’
Ab !3/\%
— JLfg —
0B | AaBb
vfs @
DY

Ab

AABD
_free.

Nk b
oo o)

'ﬁaBb

) 10,;3 o

f\ ctkb

ot , plaads cuftn - o (olig)
Pullts, fuge wbi A-bl— (3/18) amd a0 B-(B/6) gerotypes
@w&ML&WMMQwmeﬁ%§ amel Plomds i ankb (3 /(e (6)
Eults . Mg, Pm Fg , aoranal A2 -

09+ .. A P /Lwdu%&c&_
Hadfo. &P/wu (00L geme aettorm. 1% olga -Pound

@%ﬂm Prodwag. (o

kel "o G ouLf()Of\..

ALV UZA% Ha -

C\\f~ Cme. %ﬂﬂm’ omd e

goUD 0y el MG?«E\%@@

komo

He € Gepe- o ke crpressed -

Conotype A RE, ARD,

fﬁ’"@{’d(’@« ac BB, aa By, acd anlsh
&ame. PVLQMOHa Pe..

Plenotepe. o -Hee
Pm&um MOty by

Soww O, Wet m@%&gp

Oz, genl. preoduses tuo. éﬁm pbtezuo Pe

Im Fg deneredion , \"‘Tc\\jmfje% waulfy
072 b (Uowo

2‘(&5 60&&@ Cee?

Y o .
habp Aably
pfda. | Dfsg
faBb | Aabb
.jﬁbﬁn¥8ﬁff§ﬁ
bl | oabb
S{i‘/}f’/u{\;’ﬂ_i CP'{I)’ULC_,D{)
anblh | arcbb

w\@/maét %72_

V?) .D t,(Cp 2 (PRI T e
up ode 7&@03 ?VQ' %dM@fQT‘CLB ‘ g) - TlLQ.AO%uO/)Lde‘

cllele Cpy , P?-HL@Z T Liomeog ¢ Y w C'Eﬂkdl‘ffﬁmj

e. allele ®b) ap.

f

SpuertPoon | Sehefoai] Lo

%ngaé wdu&a SIGEANEY

A @@n
Mot allg

Scanne d with CamScanner

Al
.

\ | e @ = N
e o ,L,l.'/ ‘ 4

[Ew @Wwed@mﬁmm bﬂ““ gene pol iy lpud OMe_
Qe cotiemn donufnamd eptarotl o Ho. OHZ omeh, *‘“’; |

Boopmd. Geme. Galom- Wm&@ﬂﬁ 8@% 2080 A5 , g,ﬁ"gJ(a:\fa o
Feathez. oolowz Dél FOU!’.L""'

Geme. Pafvz",ﬂ ¢ colowz. SmW koo 75 ok@m?maﬂ\f"(’o Colo
AP peoram e - I o .

‘ o coelite.,
Gome. poliz'p’: eolowz. YA lomu +o

Tnderaodfom ! Domdmant aoloze ulTkiHomn. preovemd ® @@m?z%
auon. eolok P Proemts Colod- gene . et WoauoZde

PRI provent B (o 0f. evern— cuhom chomb ot
Guleltore. Pi odesomdt

[Pegerd: TAnBR] \
- (e ta% uhfie plymovtic

oumy Roaw) |
AaRb]
o 7’”‘%\ L
i
Fa, P@fjﬁ/{‘@: @ @ @ ey

I%MO 5 My A \ a b ol
e 2 UV on | At | AoBB | papn.
® e onfte | mede. | ewPeo
T appn | Adeb | RaRb | pesh
Ab uite | oloned- C‘-"“y te. (‘olm?mé_“_‘
L paan | A0 [anBB) oony,
(0 wfie | Cewlte | w udte. ube
b Aoklo heralc 0\9&% Aokl
| wilbe. | coloed o\ gugres | Gfie.

Scanne d with CamScanner

Digital Control System
Course Code: PE-EE-601A

Module - 6
Lecture 1

Stability of discrete-time system

Stability concepts and definition used in connection with continuous-time systems are directly applicable for a
discrete-time system. Like continuous-time systems, the discrete-time systems also has to satisfy two notions of

stability, namely
a. Zero input stability

b. BIBO stability
An initially relaxed system is said to be BIBO stable if for every bounded mput 7(k); £ =0 the output

v(k), k=0 is bounded for all value of &

For a linear time invariant system to be BIBO stable, it is necessary and sufficient that

> leh)|< a

Where g(k) is the response of the system to a unit sample sequence or impulse.

Stability of discrete-time system

The impulse response for the different stability properties are illustrated in the figure

T T T

Marginally stable system

T

U,z:‘ L] T T T T T T T 1 D = 2
D '3. ..‘".. UL il L o......’..‘.. ..“..... T L L L L R g D
02 1 I ! I | | 1 1 I -10 1 1
0 2 4 6 8 10 12 14 16 18 20 0 2 4
Asymptotically stable system t[s]
02 o --'.. T T .7‘1 N T T ..Y‘A T T =
oe .c. ... '. .'o. n
0.2 I : LIV , I L PR 1 1 "o..o"lo
0 2 4 B 8 10 12 14 16 18 20
t[s]

B B8 10

Unstable systemn

Stability of discrete-time system
Mapping between the s plane and the z plane

Relation between - and s
_ TIs
Z=e
— The pole and zero locations in the z plane are related to the pole and zero locations in
the s plane.

— The dynamic behavior of the discrete-time control system depends on the sampling
period T.

* Locations of poles and zeros in the = plane depend on T

Im +
Z plane

Stability of discrete-time system
Mapping between the s plane and the z plane r
U

>

™
JRB

The complex variables z and s are related by the equation
z=e"
S=0+ jw

T(o+jw)]‘are_;.'ﬁr Taejl_}"n--n-lnt'l

r=ef =e —e —e

rE

Note: frequencies differ in integral multiples of the sampling frequency‘? , are mapped into the

same location in the z plane. jw axis in the s plane corresponds to \:\ = 1. The interior of the unit
circle corresponds to the left half of the s plane. The exterior of the unit corresponds to the right

half of the plane.
= The left half of the s plane

|z| = e’ <1 (interior of the unit circle)
 The jw axis in the s plane corresponds to

|:| =1 (unit circle)

Stability of discrete-time system
Mapping between the s plane and the z plane

Primary strip and Complementary strips e ;
z=¢" 5
Lz=al Corrplxnta vy 5 plane
. im }
1) Zz = wT the angle of z varies from — o fow & i -323- z plane
as wvaries from — o fo o . as point moves from Complementary %
1 ‘o0 i 1 (2) - g .
=J W R = (W, == DI | 5
J' 2 5 .)' 2 £ 5 T gj 3
: Primary 7 -
z =wT varies from -7 torx strip ’C P
7 . Wy
This is the primary strip. R
:) . Complementary
2) Each other strip with range of w_will trace i 2

the z plane in one circle.

|
'

\\&-.\\\gf/@z////
o,
nl _§'

"y
E\
Jd
|

As the point in the s plane moves from
—oo to o0 on the jw axis, we trace the unit circle in
the z plane an infinite number of times.

SUBJECT: ENERGY MANAGEMENT & AUDIT
CODE : EE 801C

Module 2 : Energy Scenario
Lecture 1

Energy Resources

Energy is one of the major inputs for the economic development of any country. In the case of the
developing countries, the energy sector assumes a critical importance in view of the ever-increasing
energy needs requiring huge investments to meet them.
Energy can be classified into several types based on the following criteria:

* Primary and Secondary energy

» Commercial and Non-commercial energy

* Renewable and Non-Renewable energy

Primary and Secondary energy

Primary energy sources are those that are either found or stored in nature. Common primary energy
sources are coal, oil, natural gas, and biomass (such as wood). Other primary energy sources available
include nuclear energy from radioactive substances, thermal energy stored in earth's interior, and
potential energy due to earth's gravity.

Primary energy sources are mostly converted in industrial utilities into secondary energy sources; for
example coal, oil or gas converted into steam and electricity. Primary energy can also be used directly.
Some energy sources have non-energy uses, for example coal or natural gas can be used as a feedstock
in fertiliser plants.

Commercial and Non commercial energy

Commercial Energy

The energy sources that are available in the market for a definite price are known as commercial energy.
By far the most important forms of commercial energy are electricity, coal and refined petroleum
products. Commercial energy forms the basis of industrial, agricultural, transport and commercial
development in the modern world. In the industrialized countries, commercialized fuels are predominant
source not only for economic production, but also for many household tasks of general population.
Examples: Electricity, lignite, coal, oil, natural gas etc.

Non-Commercial Energy

The energy sources that are not available in the commercial market for a price are classified as non-
commercial energy. Non-commercial energy sources include fuels such as firewood, cattle dung and
agricultural wastes, which are traditionally gathered, and not bought at a price used especially in rural
households. These are also called traditional fuels. Non-commercial energy is often ignored in energy
accounting. Example: Firewood, agro waste in rural areas; solar energy for water heating, electricity
generation, for drying grain, fish and fruits; animal power for transport, threshing, lifting water for
irrigation, crushing sugarcane; wind energy for lifting water and electricity generation.

Renewable and Non-Renewable Energy

Renewable energy is energy obtained from sources that are essentially inexhaustible. Examples of
renewable resources include wind power, solar power, geothermal energy, tidal power and hydroelectric
power. The most important feature of renewable energy is that it can be harnessed without the release of
harmful pollutants.

Non-renewable energy is the conventional fossil fuels such as coal, oil and gas, which are likely to
deplete with time.

Primary Energy Resources

Coal

The proven global coal reserve was estimated to be 9,84,453 million tonnes by end of 2003. The USA
had the largest share of the global reserve (25.4%) followed by Russia (15.9%), China (11.6%). India
was 4th in the list with 8.6%.

Oil
The global proven oil reserve was estimated to be 1147 billion barrels by the end of 2003. Saudi Arabia
had the largest share of the reserve with almost 23%. (One barrel of oil is approximately 160 litres)

Gas
The global proven gas reserve was estimated to be 176 trillion cubic metres by the end of 2003. The
Russian Federation had the largest share of the reserve with almost 27%.

Indian Energy Scenario

Coal dominates the energy mix in India, contributing to 58% of the total primary energy production.
Over the years, there has been a marked increase in the share of natural gas in primary energy
production from 10% in 1994 to 13% in 1999. There has been a decline in the share of oil in primary
energy production from 20% to 17% during the same period.

Coal Supply

India has huge coal reserves, at least 84,396 million tonnes of proven recoverable reserves (at the end of
2003). This amounts to almost 8.6% of the world reserves and it may last for about 230 years at the
current Reserve to Production (R/P) ratio. In contrast, the world's proven coal reserves are expected to
last only for 192 years at the current R/P ratio.

Reserves/Production (R/P) ratio- If the reserves remaining at the end of the year are divided by the
production in that year, the result is the length of time that the remaining reserves would last if
production were to continue at that level.

India is the fourth largest producer of coal and lignite in the world. Coal production is concentrated in
these states (Andhra Pradesh, Uttar Pradesh, Bihar, Madhya Pradesh, Maharashtra, Orissa, Jharkhand,
West Bengal).

il Supply

Oil accounts for about 36 % of India's total energy consumption. India today is one of the top ten oil-
guzzling nations in the world. According to the US Energy Information Administration (EIA), India is
currently ranked behind the United States and China as the world's third-largest oil consumer. It
consumed 206.2 million tonnes (over 4 million bpd) in the 2017-18 fiscal year. India's oil demand is
projected to rise by 5.8 million barrels per day (bpd) by 2040.

Natural Gas Supply

Natural gas accounts for about 8.9 per cent of energy consumption in the country. The current demand
for natural gas is about 96 million cubic metres per day (mcmd) as against availability of 67 mcmd. By
2007, the demand is expected to be around 200 memd. Natural gas reserves are estimated at 660 billion
cubic meters.

Electrical Energy Supply

The all India installed capacity of electric power
generating stations under utilities is 3,70,107
MW as on 28.02.2021. following table shows the
details of the same

Thermal 2,33,171
Nuclear 6,780
Hydro 46,209
RES 91,154
Total 3,79,130

Nuclear
2%

SectorWise Energy Consumption in India

Average electricity usage in India stands 1,181 kWh per capita in 2018-2019. The major commercial
energy consuming sectors in the country are classified as shown in the Figure. As seen from the figure,
industry remains the biggest consumer of commercial energy and its share in the overall consumption is
43%.

Misch.
6%

8%

Industrial
43%

Domestic
23%

Agriculture
18%

Energy Needs of Growing Economy

Economic growth is desirable for developing countries, and energy is essential for economic growth.
However, the relationship between economic growth and increased energy demand is not always a
straightforward linear one. For example, under present conditions, 6% increase in India's Gross
Domestic Product (GDP) would impose an increased demand of 9 % on its energy sector.

In this context, the ratio of energy demand to GDP also termed as energy intensity is a useful indicator.
A high ratio reflects energy dependence and a strong influence of energy on GDP growth. The
developed countries, by focusing on energy efficiency and lower energy-intensive routes, maintain their
energy to GDP ratios at values of less than 1. The ratios for developing countries are much higher.

India's Energy Needs

The plan outlay vis-a-vis share of energy is given in Figure below. As seen from the Figure, in an
average of 18.0% of the total five-year plan outlay is spent on the energy sector.

[U —il — il
1 1] mn v \'} vil Vil X X Xi Xi
(1951-56) | (1956-61) = (1961-66) | (1969-74) | (1974-79) | (1980-85) | (1985-90) | (1992-97) | (1997-2002) | (2002-2007) | (2007-2012) (2012-17)
Total Outlay 2069 4800 8094 15902 39287 95700 180000 434100 859200 1484131 1589342 2156571
Power 393 427 1020 2448 7294 19265 34273 79589 124526 270276 204076 448736
20.13%
20.81%
0 0y
18.99% 1857% 19.04% __ 1833% 18.21%
15.39%
° 14.49%
12.60% 12.84%
8.90%
| I it v v vi Vil Vil X (20)(()27 (23((')77 Xl
(1951-56) | (1956-61) | (1961-66) | (1969-74) | (1974-79) | (1980-85) | (1985-90) | (1992-97) (1997-2002) 50 S0ty | (2012:17)

%| 1899% 8.90% 12.60% 15.39%

Per Capita Energy Consumption

18.57%

20.13%

19.04% 18.33%

14.49%

18.21% 12.84% 20.81%

The per capita energy consumption is too low for India as compared to developed countries. It is just 4%
of USA and 20% of the world average. The per capita consumption is likely to grow in India with
growth in economy thus increasing the energy demand.

Energy Intensity
Energy intensity is energy consumption per unit of GDP. Energy intensity indicates the development

stage of the country. India's energy intensity is 3.7 times of Japan, 1.55 times of USA, 1.47 times of
Asia and 1.5 times of World average.

Long Term Energy Scenario for India
Coal

Coal is the predominant energy source for power production in India, generating approximately 70% of
total domestic electricity. Energy demand in India is expected to increase over the next 10-15 years;
although new oil and gas plants are planned, coal is expected to remain the dominant fuel for power
generation. Despite significant increases in total installed capacity during the last decade, the gap
between electricity supply and demand continues to increase. The resulting shortfall has had a negative
impact on industrial output and economic growth.

However, to meet expected future demand, indigenous coal production will have to be greatly expanded.
Production currently stands at around 290 Million tonnes per year, but coal demand is expected to more
than double by 2010. Indian coal is typically of poor quality and as such requires to be beneficiated to
improve the quality; Coal imports will also need to increase dramatically to satisfy industrial and power
generation requirements.

Oil

India's demand for petroleum products is likely to rise from 97.7 million tonnes in 2001-02 to around
139.95 million tonnes in 2006-07, according to projections of the Tenth Five-Year Plan. The plan
document puts compound annual growth rate (CAGR) at 3.6 % during the plan period. Domestic crude
oil production is likely to rise marginally from 32.03 million tonnes in 2001-02 to 33.97 million tonnes
by the end of the 10th plan period (2006-07). India's self sufficiency in oil has consistently declined
from 60% in the 50s to 30% currently. Same is expected to go down to 8% by 2020. Around 92% of
India's total oil demand by 2020 has to be met by imports.

Natural Gas

India's natural gas production is likely to rise from 86.56 million cmpd in 2002-03 to 103.08 million
cmpd in 2006-07. It is mainly based on the strength of a more than doubling of production by private
operators to 38.25 mm cmpd.

Electricity

India currently has a peak demand shortage of around 14% and an energy deficit of 8.4%. Keeping this
in view and to maintain a GDP (gross domestic product) growth of 8% to 10%, the Government of India
has very prudently set a target of 215,804 MW power generation capacity by March 2012 from the level
of 100,010 MW as on March 2001, that is a capacity addition of 115,794 MW in the next 11 years. In
the area of nuclear power the objective is to achieve 20,000 MW of nuclear generation capacity by the
year 2020.

Energy from Biomass

N

a
l Lecture 1 I

-

A
: ABIO&

Topics

Introduction
Biomass Conversion Technologies

ABIOL

Introduction

Biomass is a renewable energy resource derived from
the carbonaceous waste of various human and natural
activities. It 1s derived from numerous sources,
including the by-products from the timber industry,
agricultural crops, raw material from the forest, major
parts of household waste and wood.

Biomass is any sort of vegetation-trees, grasses, plants
parts such as leaves, stems and twigs, and ocean plants.
From it, we can extract a wealth of stored energy.

AGRICULTURAL

CROPS & RESIDUES /| /

Introduction

During photosynthesis, plants combine carbon
dioxide from the air and water from the ground
to form carbohydrates, which form the building
blocks of biomass.

The solar energy that drives photosynthesis is
stored in the chemical bonds of the structural
components of biomass. If we burn biomass
efficiently and extract the energy stored in the
chemical bonds, oxygen from the atmosphere
combines with carbon in the plants to produce
carbon dioxide and water.

The process is cyclic and renewable because
the carbon dioxide is then available to produce
new biomass.

I

-~

~

Oxygen A Sunlight in

GLH. 7
‘f f

&L and sunlight
r l.ll"l '-':W

BIOMASS

N\

Biomass i; used to fugl
cogeneration plant boilers

i
BIOMASS %

)

‘ \\
Carbon dioide (CO,) is released
and reasbsorbed by plants

As plants grow they consume CO,

and release oxygen

Steam and electricity
are produced

1

F e,

Because the released carbon dioxide is used by growing plants in their photosynthesis process, there is no new
carbon dioxide produced or released to the atmosphere. Therefore, there's no net contribution to global carbon

dioxide emissions.

Introduction

Followings are the major biomass
applications:

Biopower — Burning biomass
directly, or converting it into gaseous
or liquid fuels that burn more
efficiently, to generate electricity

Biofuels — Converting biomass into
liquid fuels for transportation

Bioproduct — Converting biomass
into chemicals for making plastics
and other products that typically are
made from petroleum

&«

Starch

Cellulose

I|HI-IL

3 gg_,ﬂ’

/‘—\
BIOMASS
)

Ironbridge, United Kingdom — 740MW

With 740MW capacity, the Ironbridge power plant
located in the Severn Gorge, UK, is the world’s
biggest biomass power plant. Ironbridge was
previously a coal-fired power station with an
installed capacity of 1,000MW. Two units of the
plant were converted for biomass-based power
generation in 2013.

Gas station

%""’”‘\

n u n BIOMASS\ 7
Biomass Conversion Technologies _/
X) | Biomass Conversion Technologies
A wide range of technologies have been ' ,
developed to utilise the biomass resource. —
. : . Thermochemical | Biochemical
These vary from direct combustion in ‘ P— F—

burner systems, to the production of more

advanced biofuels, such as pyrolysis,

through a variety of processing

techniques.

Biomass is converted to energy through

various processes, including. Direct

combustion (burning) to produce heat. In

general the conversion technologies used

are :

 Thermochemical conversion to
produce solid, gaseous, and liquid
fuels.

* Biochemical conversion to produce
liquid and gaseous fuels

[Combustion} [Gasification] [pyrolysis] | Digestion I [Fermentation}
- Gl:s Fuel [][o] Distillation
. Turbine Cell
Steam * _ _ - '
_:_fl_erinei Turbine

v v

[| EE;actricity] [- Heat] [et }

Combustion

Combustion 1s an exothermic chemical reaction, in which
biomass is burned in the presence of air. In this process
chemical energy which is stored in the biomass is converted
in the mechanical and electrical energies. This process is
suitable for dry biomass containing moisture less than 50%.
Biomass is burned at the temperature of 800-1000 °C. This
process is used for domestic applications as well as
commercially in biomass power plants in order to produce
electricity.

i
BIOMASS® &

Biomass Conversion Technologies _J

Thermochemical conversion

Combustion ‘
Chamber ‘
)

Biomass Pump (J

Steam
[] N Valve

BIOMASS Y &

Biomass Conversion Technologies

Gasification Thermochemical conversion

Gasification 1s a process that exposes a solid fuel to high temperatures and
limited oxygen, to produce a gaseous fuel. This is a mix of gases such as carbon
monoxide, carbon dioxide, nitrogen, hydrogen and methane and is called
producer gas.

I Biomass In

Gasification is conducted in a closed chamber called gasifier. The figure shows
different sections inside a gasifier.

Drying
Biomass fuels consist of moisture ranging from 5 to 35%. At the temperature of
around 150°C, the water is removed and converted into steam.

"™ Throat

LS &L "-—'4

Pyrolysis
Pyrolysis i1s the themal decomposition of biomass fuels in the absence of

oxygen. Pyrolysis involves release of three kinds of products : solid, liquid and
gases. The temperature in this zone is within 150°C to 700°C.

1 — Grate

Ash

Biomass Conversion Technologies

BIOMASSY &

Gasification Thermochemical conversion

Combustion

Introduced air in the combustion zone. Air contains, besides oxygen and
water vapours, inert gases such as nitrogen and argon. These inert gases are
considered to be non-reactive with fuel constituents. The oxidation takes
place at the temperature of 700-2000° c.

Reduction

In reduction zone, a number of high temperature chemical
reactions take place in the absence of oxygen to produce CO &
Methane

There are various types of gasifiers, but main of them are as
following.

a. Downdraft gasifier

b. Updraft gasifier

c. Cross-draft gasifier

I Biomass In

i Gas Out

Ash

/‘\

. . . BIOMASS
l Biomass Conversion Technologies \)'
Gasification Thermochemical conversion

Downdraft Cross-draft

/‘\

. . . BIOMASS %
Biomass Conversion Technologies Ui

Thermochemical conversion

Gasification

Biomass is introduced from the top Biomass is introduced from the top and Biomass is introduced from the top and
= and moves downward. air is moves downward. air is introduced at the moves downward. air is introduced at the
.g introduced at the top and flows bottom and flows upward. Some drying bottom and flows across the bed. Some
= downward. Producer gas is occurs. Producer gas is extracted at the top. drying occurs. Producer gas is extracted
= extracted at the bottom. opposite the air nozzle at the grate.

‘0| Tar & particulates in the producer ¢ Can handle higher moisture biomass * Simplest of design.

%ﬂ gas 1s lower. * Higher temperature can destroy some Stronger circulation in hot zone

§ toxins, minerals & metals. * Lower temperature allow the use of
2 * Higher tar content. less expensive construction material.
2z [N Feed size limits * Feed size limits * Complicated to operate

%” * Scale limitation * High tar yields * Forms slag

§ * Low heating value * Scale limitations * High carbon (33%) content in ash.
g * Moisture-sensitive * Low heating value gas

=

Pyrolysis

Pyrolysis is the basic thermo-chemical process for
converting solid biomass to a more useful liquid
fuel, commonly called a bio-oil. This bio-oil can
be used in existing oil-fired burners (with very
little adjustment) to generate heat & electricity.
The process involves heating solid biomass to a
temperature of around 800°C, in the absence of
oxygen. This forces the volatile substances out of
the biomass, leaving a small quantity of solid
biomass (char). The volatiles are then collected in
liquid form as the bio-oil.

Biomass Conversion Technologies

P

Thermochemical conversion

CYCLOTRON

PREPARATION FOR PYROLYSIS

o

\—jCOMBUSTION

BIOMASS® &
_/

| cHAM BERﬁ\‘ "
i | - QUENCHER
AIRPIPE A PYROLYSIS
ASH PIPE REACTOR v

f._._.w«h
BIOMASS® &

s

Biomass Conversion Technologies

Digestion Biochemical conversion
Biomass digestion works by the action of B TR S
anaerobic bacteria. These microorganisms usually e el
live at the bottom of swamps or in other places
where there is no air, consuming dead organic Hyelronyic Hydvclytlc

; bactasa Hydolysis hacharla
matter to produce, among other things, methane [

w

and hydrogen.
We can put these bacteria to work for us. By ' Soluble organic matter ;
feeding organic matter such as animal dung or bacteria basteria
human sewage into tanks — called digesters - and —
adding bacteria, we can collect-the emitted gas to e, Acetogenesis | _
use as an energy source. This can be a very i T
efficient means of extracting usable energy from -
such biomass — up to two-thirds of the fuel energy ﬁ‘\\a e

of the animal dung 1s recovered. %
&

Fermentation

This process can be used on certain sugar
producing energy crops to produce ethanol,
a simple alcohol. It uses a simple and well
established method; yeast is added to the
biomass and the mixture is then allowed to
ferment under specific conditions. The
resulting brew is then distilled to produce
'bio-ethanol'. This can be used on it’s own
in specialised combustion engines or it can
be mixed with petrol to produce 'gasohol'.

o
BIOMASS® &

Biomass Conversion Technologies __/

Biochemical conversion

ﬂ Animal

Feed

Fermentation ‘ . Solid residue
[.

Ethanol

Thank you for your attention

——
—
—_—
P—
j——=
—
fr—
—
—_—
flom—
—
—
fre—
——
=
=
[
—
w—
rre—
s
Lo
]

e ——

IPv6

Internet Protocol version 6 is a new addressing protocol designed to incorporate all the possible
requirements of future Internet known to us as Internet version 2. This protocol as its predecessor
[Pv4, works on the Network Layer (Layer-3). Along with its offering of an enormous amount of
logical address space, this protocol has ample features to which address the shortcoming of [Pv4.

Why New IP Version?

So far, IPv4 has proven itself as a robust routable addressing protocol and has served us for
decades on its best-effort-delivery mechanism.

[Pv4 is 32 bits long and offers around 4,294,967,296 (232) addresses. This address space was
considered more than enough that time. Given below are the major points that played a key role in
the birth of [Pvé6:

Internet has grown exponentially and the address space allowed by IPv4 is saturating.
There is a requirement to have a protocol that can satisfy the needs of future Internet
addresses that is expected to grow in an unexpected manner.

[Pv4 on its own does not provide any security feature. Data has to be encrypted with some
other security application before being sent on the Internet.

Data prioritization in IPv4 is not up to date. Though IPv4 has a few bits reserved for Type of
Service or Quality of Service, but they do not provide much functionality.

[Pv4 enabled clients can be configured manually or they need some address configuration
mechanism. It does not have a mechanism to configure a device to have globally unique IP
address.

:IPv6 - Features:

The successor of IPv4 is not designed to be backward compatible. Trying to keep the basic
functionalities of IP addressing, IPv6 is redesigned entirely. It offers the following features:

Larger Address Space

In contrast to IPv4, IPv6 uses 4 times more bits to address a device on the Internet. This
much of extra bits can provide approximately 3.4x1038 different combinations of
addresses. This address can accumulate the aggressive requirement of address allotment
for almost everything in this world. According to an estimate, 1564 addresses can be
allocated to every square meter of this earth.

Simplified Header

[Pv6’s header has been simplified by moving all unnecessary information and options
(which are present in IPv4 header) to the end of the IPv6 header. IPv6 header is only twice
as bigger than IPv4 provided the fact that IPv6 address is four times longer.

End-to-end Connectivity

Every system now has unique IP address and can traverse through the Internet without
using NAT or other translating components. After IPv6 is fully implemented, every host can
directly reach other hosts on the Internet, with some limitations involved like Firewall,
organization policies, etc.

Auto-configuration

[Pv6 supports both stateful and stateless auto configuration mode of its host devices. This
way, absence of a DHCP server does not put a halt on inter segment communication.

Faster Forwarding/Routing

Simplified header puts all unnecessary information at the end of the header. The
information contained in the first part of the header is adequate for a Router to take
routing decisions, thus making routing decision as quickly as looking at the mandatory
header.

IPSec

Initially it was decided that [IPv6 must have IPSec security, making it more secure than
[Pv4. This feature has now been made optional.

No Broadcast

Though Ethernet/Token Ring are considered as broadcast network because they support
Broadcasting, IPv6 does not have any broadcast support any more. It uses multicast to
communicate with multiple hosts.

Anycast Support

This is another characteristic of IPv6. IPv6 has introduced Anycast mode of packet routing.
In this mode, multiple interfaces over the Internet are assigned same Anycast IP address.
Routers, while routing, send the packet to the nearest destination.

Mobility

[Pv6 was designed keeping mobility in mind. This feature enables hosts (such as mobile
phone) to roam around in different geographical area and remain connected with the same
[P address. The mobility feature of IPv6 takes advantage of auto IP configuration and
Extension headers.

Enhanced Priority Support

[Pv4 used 6 bits DSCP (Differential Service Code Point) and 2 bits ECN (Explicit Congestion
Notification) to provide Quality of Service but it could only be used if the end-to-end
devices support it, that is, the source and destination device and underlying network must
support it.

In IPv6, Traffic class and Flow label are used to tell the underlying routers how to
efficiently process the packet and route it.

Smooth Transition

Large IP address scheme in IPv6 enables to allocate devices with globally unique IP
addresses. This mechanism saves IP addresses and NAT is not required. So devices can
send/receive data among each other, for example, VoIP and/or any streaming media can
be used much efficiently.

Other fact is, the header is less loaded, so routers can take forwarding decisions and
forward them as quickly as they arrive.

o Extensibility

One of the major advantages of IPv6 header is that it is extensible to add more information

in the option part. IPv4 provides only 40-bytes for options, whereas options in IPv6 can be
as much as the size of IPv6 packet itself.

Addressing Modes

In computer networking, addressing mode refers to the mechanism of hosting an address on the

network. IPv6 offers several types of modes by which a single host can be addressed. More than
one host can be addressed at once or the host at the closest distance can be addressed.

Unicast:

In unicast mode of addressing, an IPv6 interface (host) is uniquely identified in a network
segment. The IPv6 packet contains both source and destination IP addresses. A host interface is
equipped with an IP address which is unique in that network segment.When a network switch or a

router receives a unicast IP packet, destined to a single host, it sends out one of its outgoing
interface which connects to that particular host.

===

Multicast

The IPv6 multicast mode is same as that of [Pv4. The packet destined to multiple hosts is sent on a
special multicast address. All the hosts interested in that multicast information, need to join that
multicast group first. All the interfaces that joined the group receive the multicast packet and
process it, while other hosts not interested in multicast packets ignore the multicast information.

Anycast

[Pv6 has in introduced a new type of addressing, which is called Anycast addressing. In this
addressing mode, multiple interfaces (hosts) are assigned same Anycast IP address. When a host
wishes to communicate with a host equipped with an Anycast IP address, it sends a Unicast

message. With the help of complex routing mechanism, that Unicast message is delivered to the
host closest to the Sender in terms of Routing cost.

4
o
3 i —
@t&@' —_—
Server with Amy=st I[P
- 3
2 o
@g@ =
Server with Anyast IP
-3 2
@@ﬁ: """ g P
Server with Amp= st IE

Let’s take an example of TutorialPoints.com Web Servers, located in all continents. Assume that all
the Web Servers are assigned a single IPv6 Anycast IP Address. Now when a user from Europe
wants to reach TutorialsPoint.com the DNS points to the server that is physically located in Europe
itself. If a user from India tries to reach Tutorialspoint.com, the DNS will then point to the Web
Server physically located in Asia. Nearest or Closest terms are used in terms of Routing Cost.

In the above picture, when a client computer tries to reach a server, the request is forwarded to
the server with the lowest Routing Cost.
IPv6 - Address Types & Formats

Address Structure

An IPv6 address is made of 128 bits divided into eight 16-bits blocks. Each block is then converted
into 4-digit Hexadecimal numbers separated by colon symbols.

For example, given below is a 128 bit [Pv6 address represented in binary format and divided into
eight 16-bits blocks:

0010000000000001 0000000000000000 0011001000111000 1101111111100001
0000000001100011 0000000000000000 0000000000000000 1111111011111011

Each block is then converted into Hexadecimal and separated by :’ symbol:
2001:0000:3238:DFE1:0063:0000:0000:FEFB

Even after converting into Hexadecimal format, IPv6 address remains long. [Pv6 provides some
rules to shorten the address. The rules are as follows:

Rule.1: Discard leading Zero(es):

In Block 5, 0063, the leading two Os can be omitted, such as (5th block):
2001:0000:3238:DFE1:63:0000:0000:FEFB

Rule.2: If two of more blocks contain consecutive zeroes, omit them all and replace with double
colon sign ::, such as (6th and 7th block):

2001:0000:3238:DFE1:63::FEFB

Consecutive blocks of zeroes can be replaced only once by :: so if there are still blocks of zeroes in
the address, they can be shrunk down to a single zero, such as (2nd block):

2001:0:3238:DFE1:63::FEFB

Interface ID

[Pv6 has three different types of Unicast Address scheme. The second half of the address (last 64
bits) is always used for Interface ID. The MAC address of a system is composed of 48-bits and
represented in Hexadecimal. MAC addresses are considered to be uniquely assigned worldwide.
Interface ID takes advantage of this uniqueness of MAC addresses. A host can auto-configure its
Interface ID by using IEEE’s Extended Unique Identifier (EUI-64) format. First, a host divides its
own MAC address into two 24-bits halves. Then 16-bit Hex value OxFFFE is sandwiched into those
two halves of MAC address, resulting in EUI-64 Interface ID.

ouI NIC Specific

00 || 11 || 22 | AB ‘CD EF

00| 11|22 | FF | FE | AB | CD | EF

Conversion of EUI-64 ID into IPv6 Interface Identifier

To convert EUI-64 ID into IPv6 Interface Identifier, the most significant 7th bit of EUI-64 ID is
complemented. For example:

00 11 22|FF FE.’AB‘CDHEF

000000 O
|
llth MSB is complemented

0000 0010

02 11 22|FF”|FEJ ABIICDV‘EF;

Global Unicast Address

This address type is equivalent to IPv4’s public address. Global Unicast addresses in IPv6 are
globally identifiable and uniquely addressable.

Jeobal Routing Prefix Subnet I Interface ID

, ! e -
I] |

48 Bits 15 Bits &4 Bits

Global Routing Prefix: The most significant 48-bits are designated as Global Routing Prefix which
is assigned to specific autonomous system. The three most significant bits of Global Routing Prefix
is always set to 001.

Link-Local Address

Auto-configured IPv6 address is known as Link-Local address. This address always starts with
FE80. The first 16 bits of link-local address is always set to 1111 1110 1000 0000 (FE80). The next
48-bits are set to 0, thus:

- 1111 1110 1000 0000 0000 0000 0000 0000 0000 DO00 0000 0000 Q000 0000 0000 0000 Irterface ID

Link-local addresses are used for communication among IPv6 hosts on a link (broadcast segment)
only. These addresses are not routable, so a Router never forwards these addresses outside the
link.

Unique-Local Address

This type of IPv6 address is globally unique, but it should be used in local communication. The
second half of this address contain Interface ID and the first half is divided among Prefix, Local Bit,
Global ID and Subnet ID.

1111110

Prefix | L Global 1D Subnet ID Interface 1D

"
‘ M e " e G ; =
1 Bit 40 Bits 16 Bits 54 Bits
Prefix is always set to 1111 110. L bit, is set to 1 if the address is locally assigned. So far, the

meaning of L bit to 0 is not defined. Therefore, Unique Local IPv6 address always starts with ‘FD’.

IPv6 - Special Addresses

Version 6 has slightly complex structure of IP address than that of IPv4. IPv6 has reserved a few
addresses and address notations for special purposes. See the table below:

IPv6 Address Meaning

:: /128 Unspecified Address
s Default Route
::1/128 Loopback Address

e Asshown in the table, the address 0:0:0:0:0:0:0:0/128 does not specify anything and is said
to be an unspecified address. After simplifying, all the Os are compacted to ::/128.

e In IPv4, the address 0.0.0.0 with netmask 0.0.0.0 represents the default route. The same
concept is also applied to IPv6, address 0:0:0:0:0:0:0:0 with netmask all Os represents the
default route. After applying IPv6 rule, this address is compressed to ::/0.

e Loopback addresses in [Pv4 are represented by 127.0.0.1 to 127.255.255.255 series. But in
[Pv6, only 0:0:0:0:0:0:0:1/128 represents the Loopback address. After loopback address, it
can be represented as ::1/128.

Reserved Multicast Address for Routing Protocols

IPv6 Address . Routing Protocol

FFO2::5 OSPFv3

FFEOZ::6 DSPFv3 Designated Routers
FF02::59 RIPng

FFOZ2::a EIGRP

e The above table shows the reserved multicast addresses used by interior routing protocol.

e The addresses are reserved following the same rules of IPv4.

Reserved Multicast Address for Routers/Node

IPv6 Address . Scope

FFOlz:1 All Modes in interface-local
FFOl:-:2 All Routers in interface local
FEROZ2::1 All Modes in link-local
FFOZz : 2 All Routers in link-local
FF0S5::2 All Routers in site-local

e These addresses help routers and hosts to speak to available routers and hosts on a
segment without being configured with an IPv6 address. Hosts use EUI-64 based auto-
configuration to self-configure an IPv6 address and then speak to available hosts/routers
on the segment by means of these addresses.

IPv6 - Headers

The wonder of IPv6 lies in its header. An IPv6 address is 4 times larger than IPv4, but surprisingly,
the header of an IPv6 address is only 2 times larger than that of IPv4. IPv6 headers have one Fixed
Header and zero or more Optional (Extension) Headers. All the necessary information that is
essential for a router is kept in the Fixed Header. The Extension Header contains optional
information that helps routers to understand how to handle a packet/flow.

Fixed Header
4-11 12-31
n-3 | Version |Traffic Class Flow Label
32-47 Paylcad Length Next Header | Hop Limit |56-63
64-191 Source Address

192-288 Destination Address

[Pv6 fixed header is 40 bytes long and contains the following information.

S.N. Field & Description

1 Version (4-bits): It represents the version of Internet Protocol, i.e. 0110.

2 Traffic Class (8-bits): These 8 bits are divided into two parts. The most
significant 6 bits are used for Type of Service to let the Router Known
what services should be provided to this packet. The least significant 2
bits are used for Explicit Congestion Notification (ECN).

3 Flow Label (20-bits): This label is used to maintain the sequential flow of
the packets belonging to a communication. The source labels the
sequence to help the router identify that a particular packet belongs to a
specific flow of information. This field helps avoid re-ordering of data
packets. It is designed for streaming/real-time media.

4 Payload Length (16-bits): This field is used to tell the routers how much
information a particular packet contains in its payload. Payload is
composed of Extension Headers and Upper Layer data. With 16 bits, up
to 65535 bytes can be indicated; but if the Extension Headers contain
Hop-by-Hop Extension Header, then the payload may exceed 65535
bytes and this field is set to 0.

5 Next Header (8-bits): This field is used to indicate either the type of
Extension Header, or if the Extension Header is not present then it
indicates the Upper Layer PDU. The values for the type of Upper Layer
PDU are same as [Pv4’s.

6 Hop Limit (8-bits): This field is used to stop packet to loop in the
network infinitely. This is same as TTL in IPv4. The value of Hop Limit
field is decremented by 1 as it passes a link (router/hop). When the field
reaches 0 the packet is discarded.

7 Source Address (128-bits): This field indicates the address of originator
of the packet.

8 Destination Address (128-bits): This field provides the address of
intended recipient of the packet.

Extension Headers

In IPv6, the Fixed Header contains only that much information which is necessary, avoiding those
information which is either not required or is rarely used. All such information is put between the
Fixed Header and the Upper layer header in the form of Extension Headers. Each Extension Header
is identified by a distinct value.

When Extension Headers are used, IPv6 Fixed Header’s Next Header field points to the first
Extension Header. If there is one more Extension Header, then the first Extension Header’s ‘Next-
Header’ field points to the second one, and so on. The last Extension Header’s ‘Next-Header’ field
points to the Upper Layer Header. Thus, all the headers points to the next one in a linked list
manner.

If the Next Header field contains the value 59, it indicates that there are no headers after this
header, not even Upper Layer Header.

The following Extension Headers must be supported as per RFC 2460:

; Next Header s
Extension Header Description
Value

Hop-by-Hop Options header 0 read by all devices in transit network
Roiitig haader - mnt—aim mF?‘t_thS to support making

routing decision

contains parameters of datagram
Fragment header 44 i

fragmentation
Destination Options header B0 read by destination devices
Authentication header 51 information regarding authenticity
Encapsulating Security e .
Payload header 50 encryption information

The sequence of Extension Headers should be:

IPv6 header
Hop-by-Hop Options header

Destination Options header!

Routing header
Fragment header
Authentication header

Encapsulating Security Payload header

Destination Options header?
Upper-layer header

These headers:
e 1.should be processed by First and subsequent destinations.
e 2.should be processed by Final Destination.

Extension Headers are arranged one after another in a linked list manner, as depicted in the
following diagram:

IPvE Header Extension Header 1 Extension Header n Upper Layer

Data
Mext Header MNext Header MNext Header

W o A\

IPv6 - Communication

In [Pv4, a host that wants to communicate with another host on the network needs to have an IP

address acquired either by means of DHCP or by manual configuration. As soon as a host is

equipped with some valid IP address, it can speak to any host on the subnet. To communicate on

layer-3, a host must also know the IP address of the other host. Communication on a link, is

established by means of hardware embedded MAC Addresses. To know the MAC address of a host
whose [P address is known, a host sends ARP broadcast and in return, the intended host sends
back its MAC address.

In IPv6, there are no broadcast mechanisms. It is not a must for an IPv6 enabled host to obtain an
[P address from DHCP or manually configured, but it can auto-configure its own IP.

ARP has been replaced by ICMPv6 Neighbor Discovery Protocol.

Neighbor Discovery Protocol

A host in [Pv6 network is capable of auto-configuring itself with a unique link-local address. As
soon as host gets an [Pv6 address, it joins a number of multicast groups. All communications

related to that segment take place on those multicast addresses only. A host goes through a series
of states in IPv6:

o Neighbor Solicitation: After configuring all IPv6’s either manually, or by DHCP Server or
by auto-configuration, the host sends a Neighbor Solicitation message out to FF02::1/16

multicast address for all its IPv6 addresses in order to know that no one else occupies the

same addresses.

e DAD (Duplicate Address Detection): When the host does not listen from anything from

the segment regarding its Neighbor Solicitation message, it assumes that no duplicate
address exists on the segment.

e Neighbor Advertisement: After assigning the addresses to its interfaces and making them
up and running, the host once again sends out a Neighbor Advertisement message telling
all other hosts on the segment, that it has assigned those [Pv6 addresses to its interfaces.

Once a host is done with the configuration of its IPv6 addresses, it does the following things:

e Router Solicitation: A host sends a Router Solicitation multicast packet (FF02::2/16) out

on its segment to know the presence of any router on this segment. It helps the host to
configure the router as its default gateway. If its default gateway router goes down, the

host can shift to a new router and makes it the default gateway.

e Router Advertisement: When a router receives a Router Solicitation message, it response
back to the host, advertising its presence on that link.

e Redirect: This may be the situation where a Router receives a Router Solicitation request

but it knows that it is not the best gateway for the host. In this situation, the router sends

back a Redirect message telling the host that there is a better ‘next-hop’ router available.

Next-hop is where the host will send its data destined to a host which does not belong to
the same segment.

[Pv6 - Subnetting

In IPv4, addresses were created in classes. Classful IPv4 addresses clearly define the bits used for
network prefixes and the bits used for hosts on that network. To subnet in [Pv4, we play with the

default classful netmask which allows us to borrow host bits to be used as subnet bits. This results

in multiple subnets but less hosts per subnet. That is, when we borrow host bits to create a subnet,
it costs us in lesser bit to be used for host addresses.

[Pv6 addresses use 128 bits to represent an address which includes bits to be used for subnetting.
The second half of the address (least significant 64 bits) is always used for hosts only. Therefore,
there is no compromise if we subnet the network.

Routing Prefix S"‘!FS H Interface ID
T - " \..._’_._._.-"' . - —
48 Bits 16 Bits 4 Bits

IPv6 Subnetting]

16 bits of subnet is equivalent to IPv4’s Class B Network. Using these subnet bits, an organization
can have another 65 thousands of subnets which is by far, more than enough.

Thus routing prefix is /64 and host portion is 64 bits. We can further subnet the network beyond

16 bits of Subnet ID, by borrowing host bits; but it is recommended that 64 bits should always be
used for hosts addresses because auto-configuration requires 64 bits.

IPv6 subnetting works on the same concept as Variable Length Subnet Masking in IPv4.

48 prefix can be allocated to an organization providing it the benefit of having up to /64 subnet

prefixes, which is 65535 sub-networks, each having 2¢*hosts. A /64 prefix can be assigned to a

oint-to-point connection where there are only two hosts (or IPv6 enabled devices) on a link.

Transition From IPv4 to IPv6

Advertisements

Complete transition from IPv4 to IPv6 might not be possible because IPv6 is not backward

compatible. This results in a situation where either a site is on IPv6 or it is not. It is unlike

implementation of other new technologies where the newer one is backward compatible so the

older system can still work with the newer version without any additional changes.

To overcome this short-coming, we have a few technologies that can be used to ensure slow and
smooth transition from IPv4 to IPvé6.

Dual Stack Routers

A router can be installed with both IPv4 and IPv6 addresses configured on its interfaces pointing
to the network of relevant IP scheme.

IPvE Network

|PvE Traffic

e
-

Il

| Pud Traffic

[Pwd Network

In the above diagram, a server having IPv4 as well as IPv6 address configured for it can now speak

with all the hosts on both the IPv4 as well as the IPv6 networks with the help of a Dual Stack

Router. The Dual Stack Router, can communicate with both the networks. It provides a medium for

the hosts to access a server without changing their respective IP versions.

Tunneling

In a scenario where different IP versions exist on intermediate path or transit networks, tunneling

provides a better solution where user’s data can pass through a non-supported IP version.

Transit Nebwork
1Pva Network @g@ C_imj,-) @gﬁ. 1Pvé Netwerk
IBVE Natwark

The above diagram depicts how two remote IPv4 networks can communicate via a Tunnel, where

the transit network was on IPv6. Vice versa is also possible where the transit network is on [Pv6

and the remote sites that intend to communicate are on IPv4.

NAT Protocol Translation

This is another important method of transition to IPv6 by means of a NAT-PT (Network Address

Translation — Protocol Translation) enabled device. With the help of a NAT-PT device, actual can

take place happens between IPv4 and [Pv6 packets and vice versa. See the diagram below:

IPv& Intemet

NAT enabled Device

IPvd Host

A host with 1Pv4 address sends a request to an [Pv6 enabled server on Internet that does not
understand IPv4 address. In this scenario, the NAT-PT device can help them communicate. When
the IPv4 host sends a request packet to the IPv6 server, the NAT-PT device/router strips down the
[Pv4 packet, removes IPv4 header, and adds IPv6 header and passes it through the Internet. When
a response from the IPv6 server comes for the [Pv4 host, the router does vice versa.

[Pv6 - Routing

Routing concepts remain same in case of [Pv6 but almost all routing protocols have been redefined
accordingly. We discussed earlier, how a host speaks to its gateway. Routing is a process to

forward routable data choosing the best route among several available routes or path to the
destination. A router is a device that forwards data that is not explicitly destined to it.

There exists two forms of routing protocols:

o Distance Vector Routing Protocol: A router running distance vector protocol advertises
its connected routes and learns new routes from its neighbors. The routing cost to reach a

destination is calculated by means of hops between the source and destination. A router

generally relies on its neighbor for best path selection, also known as “routing-by-rumors”.

RIP and BGP are Distance Vector Protocols.

o Link-State Routing Protocol: This protocol acknowledges the state of a Link and
advertises to its neighbors. Information about new links is learnt from peer routers. After
all the routing information has been converged, the Link-State Routing Protocol uses its
own algorithm to calculate the best path to all available links. OSPF and IS-IS are link state
routing protocols and both of them use Dijkstra’s Shortest Path First algorithm.

Routing protocols can be divided in two categories:

e Interior Routing Protocol: Protocols in this categories are used within an autonomous

system or organization to distribute routes among all routers inside its boundary.
Examples: RIP, OSPF.

o Exterior Routing Protocol: An Exterior Routing Protocol distributes routing information
between two different autonomous systems or organization. Examples: BGP.

Routing protocols
e RIPng

RIPng stands for Routing Information Protocol Next Generation. This is an Interior Routing

Protocol and is a Distance Vector Protocol. RIPng has been upgraded to support IPv6.

e OSPFv3

Open Shortest Path First version 3 is an Interior Routing Protocol which is modified to

support IPv6. This is a Link-State Protocol and uses Djikrasta’s Shortest Path First
algorithm to calculate best path to all destinations.

o BGPv4

BGP stands for Border Gateway Protocol. It is the only open standard Exterior Gateway

Protocol available. BGP is a Distance Vector protocol which takes Autonomous System as

calculation metric, instead of the number of routers as Hop. BGPv4 is an upgrade of BGP to

support IPv6 routing.

Protocols Changed to Support IPv6

e ICMPv6: Internet Control Message Protocol version 6 is an upgraded implementation of

ICMP to accommodate IPv6 requirements. This protocol is used for diagnostic functions,
error and information message, statistical purposes. ICMPv6’s Neighbor Discovery

Protocol replaces ARP and helps discover neighbor and routers on the link.

e DHCPv6: Dynamic Host Configuration Protocol version 6 is an implementation of DHCP.
[Pv6 enabled hosts do not require any DHCPv6 Server to acquire IP address as they can be

auto-configured. Neither do they need DHCPv6 to locate DNS server because DNS can be

discovered and configured via ICMPv6 Neighbor Discovery Protocol. Yet DHCPv6 Server

can be used to provide these information.

e DNS: There has been no new version of DNS but it is now equipped with extensions to
rovide support for querying IPv6 addresses. A new AAAA (quad-A) record has been

added to reply IPv6 query messages. Now the DNS can reply with both IP versions (4 & 6)

without any change in the query format.

IPv6 - Mobility

When a host is connected to a link or network, it acquires an IP address and all communication
take place using that IP address on that link. As soon as, the same host changes its physical

location, that is, moves into another area / subnet / network / link, its [P address changes

accordingly, and all the communication taking place on the host using old IP address, goes down.

[Pv6 mobility provides a mechanism for the host to roam around different links without losing any
communication/connection and its IP address.

Multiple entities are involved in this technology:

e _Mobile Node: The device that needs IPv6 mobility.

e Home Link: This link is configured with the home subnet prefix and this is where the
Mobile IPv6 device gets its Home Address.

e Home Address: This is the address which the Mobile Node acquires from the Home Link.
This is the permanent address of the Mobile Node. If the Mobile Node remains in the same
Home Link, the communication among various entities take place as usual.

e Home Agent: This is a router that acts as a registrar for Mobile Nodes. Home Agent is
connected to Home Link and maintains information about all Mobile Nodes, their Home

Addresses, and their present IP addresses.

e Foreign Link: Any other Link that is not Mobile Node’s Home Link.

e Care-of Address: When a Mobile Node gets attached to a Foreign Link, it acquires a new IP

address of that Foreign Link’s subnet. Home Agent maintains the information of both

Home Address and Care-of Address. Multiple Care-of addresses can be assigned to a Mobile

Node, but at any instance, only one Care-of Address has binding with the Home Address.

e Correspondent Node: Any IPv6 enabled device that intends to have communication with
Mobile Node.

Mobility Operation

When Mobile Node stays in its Home Link, all communications take place on its Home Address as

shown below:

Home Agent

Mobile Node

Foreign
Link

Correspondent
Node

Mobile Node connected to Home Link]

When a Mobile Node leaves its Home Link and is connected to some Foreign Link, the Mobility

feature of IPv6 comes into play. After getting connected to a Foreign Link, the Mobile Node

acquires an IPv6 address from the Foreign Link. This address is called Care-of Address. The Mobile

Node sends a binding request to its Home Agent with the new Care-of Address. The Home Agent

binds the Mobile Node’s Home Address with the Care-of Address, establishing a Tunnel between
both.

Whenever a Correspondent Node tries to establish connection with the Mobile Node (on its Home

Address), the Home Agent intercepts the packet and forwards to Mobile Node’s Care-of Address

over the Tunnel which was already established.

Home
Address

Mobile

o e e e

A : Care-of
Home Address
Agent

Foreign
Link

Node

Mobile Node connected to Foreign Link]

Route Optimization

When a Correspondent Node initiates a communication by sending packets to Mobile the Node on

the Home Address, these packets are tunneled to the Mobile Node by the Home Agent. In Route

Optimization mode, when the Mobile Node receives a packet from the Correspondent Node, it does

not forward replies to the Home Agent. Rather, it sends its packet directly to the Correspondent

Node using Home Address as Source Address. This mode is optional and not used by default.

IT-5th Semester
Operating System (PCC-CS502)
Lecture-13

Resource Allocation Graphs:

Deadlocks can be described more precisely in terms of a directed graph called a system resource
allocation graph. This graph consists of a set of vertices V and a set of edges E. The set of vertices is
portioned into two different types of nodes P={P0, P1... Pn}, the set of the active processes in the system,
and R={R0, R1... Rn}, the set consisting of all resource types in the system. A directed edge from a process
Pi to resource type Rj signifies that process Pi requested an instance of Rj and is waiting for that resource.
A directed edge from Rj to Pi signifies that an instance of Rj has been allocated to Pi.

e Process

e Resource Type with 2 instances 1]
[]
« Pi requests instance of Rj 1]
[]
e Pi is holding an instance of Rj
R1] N R3
I R T B

R2 \E”:l R4

The resource allocation graph shown above depicts the following situation:
P={P1,P2,P3}

R={R1, R2, R3}

E={P1-R1,P2 - R3,R1 > P2,R2 - P2, R2 - P1,P3 - R3}

Resource Instances

One instance of resource type R1
Two instances of resource type R2
One instance of resource type R3
Three instances of resource type R4

Process States

Process P1 is holding an instance of resource R2, and is waiting for an instance of resource R1.
Process P2 is holding an instance of resource R1 and R2, and is waiting for an instance of resource R3.
Process P3 is holding an instance of resource R3.

Given the definition of a resource allocation graph, it can be shown that if the graph contains no cycles,
then no process is deadlocked.

If the graph contains cycles then:
e Ifonly one instance per resource type, then a deadlock exists.
e Ifseveral instances per resource type, possibility of deadlock exists.

Here is a resource allocation graph with a deadlock. There are two cycles in this graph:
{P1->R1,R1->P2,P2—>R3,R3->P3,P3>R2,R2—>P1}and

{P2 - R3,R3 - P3,P3 - R2,R2 - P2}

No process will release an already acquired resource and the three processes will remain in the deadlock
state.

R, 2

s

L """--.\/

3

P
@

HE

N
L
o

\’f’;‘i

The graph shown above has a cycle but there is no deadlock because processes P2 and P4 do not require
further resources to complete their execution and will release the resources they are currently hold in
finite time. These resources can then be allocated to P1 and P3 for them to resume their execution.

UNIT IIl - INTERMEDIATE CODE GENERATION

INTRODUCTION

The front end translates a source program into an intermediate representation from which
the back end generates target code.

Benefits of using a machine-independent intermediate form are:

1. Retargeting is facilitated. That is, a compiler for a different machine can be created by
attaching a back end for the new machine to an existing front end.

2. A machine-independent code optimizer can be applied to the intermediate representation.

Position of intermediate code generator

parser -~ static .| intermediate mtemledlate‘ code
checker code generator code generator

INTERMEDIATE LANGUAGES
Three ways of intermediate representation:
e Syntax tree
e Postfix notation
e Three address code

The semantic rules for generating three-address code from common programming language
constructs are similar to those for constructing syntax trees or for generating postfix notation.

Graphical Representations:
Syntax tree:

A syntax tree depicts the natural hierarchical structure of a source program. A dag
(Directed Acyclic Graph) gives the same information but in a more compact way because
common subexpressions are identified. A syntax tree and dag for the assignment statement a : =
b *-c¢+b *-care as follows:

http://csetube.weebly.com/
http://csetube.weebly.com/

assign assign

N N
N C
N N /

uminus b uminus b uminus

C C C

(a) Syntax tree (b) Dag

Postfix notation:

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of
the tree in which a node appears immediately after its children. The postfix notation for the
syntax tree given above is

a b cuminus * b c uminus * + assign
Syntax-directed definition:

Syntax trees for assignment statements are produced by the syntax-directed definition.
Non-terminal S generates an assignment statement. The two binary operators + and * are
examples of the full operator set in a typical language. Operator associativities and precedences
are the usual ones, even though they have not been put into the grammar. This definition
constructs the tree from the inputa:=b * -c+b* - c.

PRODUCTION SEMANTIC RULE

S>id:=E S.nptr : = mknode(‘assign’,mkleaf(id, id.place), E.nptr)
E2>E +E, E.nptr : = mknode(‘+’, E.nptr, E;.nptr)

E-2>E| *E, E.nptr : = mknode(‘*’, E;.nptr, E;.nptr)

E > -E; E.nptr : = mknode(‘uminus’, E;.nptr)

E->(E)) E.nptr : = E;.nptr

E->id E.nptr : = mkleaf(id, id.place)

Syntax-directed definition to produce syntax trees for assignment statements

http://csetube.weebly.com/
http://csetube.weebly.com/

The token id has an attribute place that points to the symbol-table entry for the identifier.
A symbol-table entry can be found from an attribute id.name, representing the lexeme associated
with that occurrence of id. If the Iexical analyzer holds all lexemes in a single array of
characters, then attribute name might be the index of the first character of the lexeme.

Two representations of the syntax tree are as follows. In (a) each node is represented as a
record with a field for its operator and additional fields for pointers to its children. In (b), nodes
are allocated from an array of records and the index or position of the node serves as the pointer
to the node. All the nodes in the syntax tree can be visited by following pointers, starting from
the root at position 10.

Two representations of the syntax tree

assign ! ! 0 id || b !
T T
| v 1 id | ¢ |
id a | |
| 2| uminus | 1 |
Y | |
[[3 * | 0 | 2
M |
4 id | b |
| |
- y - A\ 4 | 5 i N
| | | |
v v 6| uminus |I 5 !
id | b id | b > II 4 I 6
| | A\ 4 | | A 4 , |
uminusI L uminusI o 8 + | 3 | 7
: v -
| — of id | a |
id | C id | C 1 I
10| assign : 9 : 8

(a) (b)
Three-Address Code:
Three-address code is a sequence of statements of the general form
X:=yopz

where X, y and z are names, constants, or compiler-generated temporaries; op stands for any
operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on boolean-
valued data. Thus a source language expression like x+ y*z might be translated into a sequence

tt:=y *z
t2:=X+t1

where t; and t; are compiler-generated temporary names.

http://csetube.weebly.com/
http://csetube.weebly.com/

Advantages of three-address code:

» The unraveling of complicated arithmetic expressions and of nested flow-of-control

statements makes three-address code desirable for target code generation and
optimization.

» The use of names for the intermediate values computed by a program allows three-
address code to be easily rearranged — unlike postfix notation.

Three-address code is a linearized representation of a syntax tree or a dag in which
explicit names correspond to the interior nodes of the graph. The syntax tree and dag are

represented by the three-address code sequences. Variable names can appear directly in three-
address statements.

Three-address code corresponding to the syntax tree and dag given above

t1:= -c¢ ti:=-C
tb:= b * th:=b*t
t3:= -¢ t5 1=t t1
ty:= b * t3 a:=ts
ts:= th + 4
a.= ts

(a) Code for the syntax tree (b) Code for the dag

The reason for the term “three-address code” is that each statement usually contains three
addresses, two for the operands and one for the result.

Types of Three-Address Statements:

The common three-address statements are:

1. Assignment statements of the form x : =y op z, where op is a binary arithmetic or logical
operation.

2. Assignment instructions of the form x : = op y, where op is a unary operation. Essential unary
operations include unary minus, logical negation, shift operators, and conversion operators
that, for example, convert a fixed-point number to a floating-point number.

3. Copy statements of the form x : =y where the value of y is assigned to x.

4. The unconditional jump goto L. The three-address statement with label L is the next to be
executed.

5. Conditional jumps such as if x relop y goto L. This instruction applies a relational operator (
<, =,>=, etc.) to x and y, and executes the statement with label L next if x stands in relation

http://csetube.weebly.com/
http://csetube.weebly.com/

relop to y. If not, the three-address statement following if x relop y goto L is executed next,
as in the usual sequence.

6. param x and call p, n for procedure calls and return y, where y representing a returned value
is optional. For example,
param x;
param X,

param X
call p,n
generated as part of a call of the procedure p(x1, X2, ,Xp).

7. Indexed assignments of the form x : = y[i] and x[i] : = y.

8. Address and pointer assignments of the form x : = &y, x : = *y, and *x : =y.
Syntax-Directed Translation into Three-Address Code:

When three-address code is generated, temporary names are made up for the interior
nodes of a syntax tree. For example, id : = E consists of code to evaluate E into some temporary
t, followed by the assignment id.place : = t.

Giveninputa:=b * - ¢+ b * - c, the three-address code is as shown above. The
synthesized attribute S.code represents the three-address code for the assignment S.
The nonterminal £ has two attributes :
1. E.place, the name that will hold the value of £, and
2. E.code, the sequence of three-address statements evaluating E.

Syntax-directed definition to produce three-address code for assignments

PRODUCTION SEMANTIC RULES
S 2id:=E S.code : = E.code || gen(id.place ‘:=’ E.place)
E2>E,+E, E.place := newtemp;

E.code :=E|.code || Excode || gen(E.place ‘:=’ E.place ‘+’ Ejplace)

E2>E; *E, E.place := newtemp;
E.code := E|.code || Excode || gen(E.place ‘:=’ E.place ‘*’ Ej.place)

E 2-E; E.place := newtemp;
E.code := E|.code || gen(E.place ‘:=’ ‘uminus’ E}.place)

E 2 (E;) E.place : = E.place;
E.code : = E;.code

E 2>id E.place : = id.place;
E.code:="“"

http://csetube.weebly.com/
http://csetube.weebly.com/

Semantic rules generating code for a while statement

S.begin:
<_
E.code
if E.place = 0 goto S.after
Si.code
goto S.begin
S.after: <
PRODUCTION SEMANTIC RULES
S = while E do S; S.begin := newlabel;
S.after := newlabel;
S.code := gen(S.begin :’) ||
E.code ||
gen (‘if’ E.place ‘=’ ‘0’ ‘goto’ S.after)||
S.code ||
gen (‘goto’ S.begin) ||
gen (S.after “:°)
» The function newtemp returns a sequence of distinct names ti,t,,..... in response to

successive calls.

» Notation gen(x ="y ‘+’ z) is used to represent three-address statement x :=y + z.
Expressions appearing instead of variables like x, y and z are evaluated when passed to
gen, and quoted operators or operand, like ‘+’ are taken literally.

» Flow-of—control statements can be added to the language of assignments. The code for §
—> while E do S is generated using new attributes S.begin and S.after to mark the first
statement in the code for £ and the statement following the code for S, respectively.

» The function newlabel returns a new label every time it is called.

» We assume that a non-zero expression represents true; that is when the value of E
becomes zero, control leaves the while statement.

Implementation of Three-Address Statements:

A three-address statement is an abstract form of intermediate code. In a compiler,
these statements can be implemented as records with fields for the operator and the operands.
Three such representations are:

http://csetube.weebly.com/
http://csetube.weebly.com/

» Quadruples
» Triples
» Indirect triples
Quadruples:
» A quadruple is a record structure with four fields, which are, op, argl, arg2 and result.

» The op field contains an internal code for the operator. The three-address statement x : =
y op z is represented by placing y in argl, z in arg2 and x in result.

» The contents of fields argl, arg2 and result are normally pointers to the symbol-table
entries for the names represented by these fields. If so, temporary names must be entered
into the symbol table as they are created.

Triples:

» To avoid entering temporary names into the symbol table, we might refer to a temporary
value by the position of the statement that computes it.

» If we do so, three-address statements can be represented by records with only three fields:
op, argl and arg?2.

» The fields argl and arg2, for the arguments of op, are either pointers to the symbol table
or pointers into the triple structure (for temporary values).

» Since three fields are used, this intermediate code format is known as triples.

op argl | arg2 | result op argl arg?2
(0) | uminus c ty (0) | uminus c
(1) * b | t | = b (©)
(2) | uminus C t3 (2) | uminus C
3) * b t3 ts G| * b 2)
4) + t ty ts @ | + (1) 3)
(5) = t3 a (5) | assign a 4)

(a) Quadruples (b) Triples

Quadruple and triple representation of three-address statements given above

http://csetube.weebly.com/
http://csetube.weebly.com/

A ternary operation like x[i] : = y requires two entries in the triple structure as shown as below
while x : = y[i] is naturally represented as two operations.

op argl |arg2
(0) [1= X i
(1) assign (0) y

(@) x[i] : =y

Indirect Triples:

op argl arg?
© | =[] y i
(1) | assign X (0)

(b) x : =yl[i]

» Another implementation of three-address code is that of listing pointers to triples, rather
than listing the triples themselves. This implementation is called indirect triples.

» For example, let us use an array statement to list pointers to triples in the desired order.
Then the triples shown above might be represented as follows:

op argl arg?2
(14) | uminus c
(15) * b (14)
(16) | uminus c
(17) * b (16)
(18) + (15) (17)
(19) assign a (18)

Indirect triples representation of three-address statements

Statement
0) (14)
(1) (15)
(2) (16)
3) (17)
“4) (18)
(%) (19)
DECLARATIONS

As the sequence of declarations in a procedure or block is examined, we can lay out

storage for names local to the procedure. For each local name, we create a symbol-table entry
with information like the type and the relative address of the storage for the name. The relative
address consists of an offset from the base of the static data area or the field for local data in an

activation record.

http://csetube.weebly.com/
http://csetube.weebly.com/

Declarations in a Procedure:

The syntax of languages such as C, Pascal and Fortran, allows all the declarations in a
single procedure to be processed as a group. In this case, a global variable, say offset, can keep
track of the next available relative address.

In the translation scheme shown below:
» Nonterminal P generates a sequence of declarations of the form id : 7.

» Before the first declaration is considered, offset is set to 0. As each new name is seen ,
that name is entered in the symbol table with offset equal to the current value of offset,
and offset is incremented by the width of the data object denoted by that name.

» The procedure enter(name, type, offset) creates a symbol-table entry for name, gives its
type type and relative address offset in its data area.

» Attribute fype represents a type expression constructed from the basic types integer and
real by applying the type constructors pointer and array. If type expressions are
represented by graphs, then attribute fype might be a pointer to the node representing a
type expression.

» The width of an array is obtained by multiplying the width of each element by the
number of elements in the array. The width of each pointer is assumed to be 4.

Computing the types and relative addresses of declared names

P 2D {offset : =0}

D>D;D

D2id:T { enter(id.name, T.type, offset);
offset : = offset + T.width }

T 2 integer { T.type : = integer;
T.width : =4}

T 2 real { T.type : = real;
T.width : =8}

T 2 array [num] of T; { T.type : = array(num.val, T,.type);

T.width : = num.val X T.width }

T2>%T,; { T.type : = pointer (Ti.type);
T.width : =4}

http://csetube.weebly.com/
http://csetube.weebly.com/

Keeping Track of Scope Information:

When a nested procedure is seen, processing of declarations in the enclosing procedure is
temporarily suspended. This approach will be illustrated by adding semantic rules to the
following language:

P>D
D2D;D|id:T|procid, D ;S
One possible implementation of a symbol table is a linked list of entries for names.

A new symbol table is created when a procedure declaration D = proc id D;;S is seen,
and entries for the declarations in D; are created in the new table. The new table points back to
the symbol table of the enclosing procedure; the name represented by id itself is local to the
enclosing procedure. The only change from the treatment of variable declarations is that the
procedure enter is told which symbol table to make an entry in.

For example, consider the symbol tables for procedures readarray, exchange, and
quicksort pointing back to that for the containing procedure sort, consisting of the entire
program. Since partition is declared within quicksort, its table points to that of quicksort.

Symbol tables for nested procedures

sort

nil header

a

X

readarray | — > to readarray
exchange | — T toexchange
quicksort l
readarray exchange quicksort
header ! header header
i k
v
partition
A i

partition

header

http://csetube.weebly.com/
http://csetube.weebly.com/

The semantic rules are defined in terms of the following operations:

1. mktable(previous) creates a new symbol table and returns a pointer to the new table. The
argument previous points to a previously created symbol table, presumably that for the
enclosing procedure.

2. enter(table, name, type, offset) creates a new entry for name name in the symbol table pointed
to by table. Again, enter places type type and relative address offset in fields within the entry.

3. addwidth(table, width) records the cumulative width of all the entries in table in the header
associated with this symbol table.

4. enterproc(table, name, newtable) creates a new entry for procedure name in the symbol table
pointed to by table. The argument newtable points to the symbol table for this procedure
name.

Syntax directed translation scheme for nested procedures

P>MD { addwidth (top(thiptr) , top (offset));
pop (tbiptr); pop (offset) }
M D¢ { t : = mktable (nil);
push (t,tblptr); push (0,0ffset) }
D-=>D 15 Dz
D Dprocid; ND;; S {t:=top (thiptr);
addwidth (t, top (offset));
pop (tblptr); pop (offset);
enterproc (top (tblptr), id.name, t) }
D2id:T { enter (top (tblptr), id.name, T.type, top (offset));
top (offset) := top (offset) + T.width }
N 2¢ { t := mktable (top (tblptr));

push (t, thiptr); push (0,offset) }

» The stack tblptr is used to contain pointers to the tables for sort, quicksort, and partition
when the declarations in partition are considered.

» The top element of stack offset is the next available relative address for a local of the
current procedure.

> All semantic actions in the subtrees for B and C in
A - BC {actiony}

are done before action, at the end of the production occurs. Hence, the action associated
with the marker M is the first to be done.

http://csetube.weebly.com/
http://csetube.weebly.com/

The action for nonterminal M initializes stack tbhlptr with a symbol table for the
outermost scope, created by operation mktable(nil). The action also pushes relative
address 0 onto stack offset.

Similarly, the nonterminal N uses the operation mktable(top(tblptr)) to create a new
symbol table. The argument fop(tblptr) gives the enclosing scope for the new table.

For each variable declaration id: T, an entry is created for id in the current symbol table.
The top of stack offset is incremented by T.width.

» When the action on the right side of D =2 proc id; ND,; S occurs, the width of all
declarations generated by D is on the top of stack offset; it is recorded using addwidth.
Stacks thlptr and offset are then popped.

At this point, the name of the enclosed procedure is entered into the symbol table of its
enclosing procedure.

ASSIGNMENT STATEMENTS

Suppose that the context in which an assignment appears is given by the following grammar.

P->MD

M=>¢

D>D;D |id:T | procid;ND ;S

N-=>¢

Nonterminal P becomes the new start symbol when these productions are added to those in the
translation scheme shown below.

Translation scheme to produce three-address code for assignments

S—>id:=E { p : = lookup (id.name);

if p #nil then

emit(p ‘ : =" E.place)

else error }
E-2>E +E; { E.place : = newtemp;

emit(E.place ‘: =" E;.place * + “ Ey.place) }
E-2>E *E; { E.place : = newtemp;

emit(E.place : =" E;.place * © E,.place) }
E > -E; { E.place : = newtemp;

emit (E.place : =" ‘uminus’ E;.place) }
E->(E)) { E.place : = E;.place }

http://csetube.weebly.com/
http://csetube.weebly.com/

E - id { p : = lookup (id.name);

if p # nil then
E.place: =p
else error }

Reusing Temporary Names

>

The temporaries used to hold intermediate values in expression calculations tend to
clutter up the symbol table, and space has to be allocated to hold their values.

Temporaries can be reused by changing newtemp. The code generated by the rules for E
- E; + E; has the general form:

evaluate E; into t;
evaluate E, into t,
t:=1 + t

The lifetimes of these temporaries are nested like matching pairs of balanced parentheses.

Keep a count c , initialized to zero. Whenever a temporary name is used as an operand,
decrement ¢ by 1. Whenever a new temporary name is generated, use $c and increase ¢

by 1.
For example, consider the assignmentx :=a*b+c*d—-e*f

Three-address code with stack temporaries

Statement value of ¢

0
$0:=a*b 1
$1:=c*d 2
$0 :=$0 + $1 1
$1:=e*f 2
$0 :=$0 - $1 1
x =$0 0

Addressing Array Elements:

Elements of an array can be accessed quickly if the elements are stored in a block of

consecutive locations. If the width of each array element is w, then the ith element of array A

begin

s in location

base+ (i—low)x w

where low is the lower bound on the subscript and base is the relative address of the storage
allocated for the array. That is, base is the relative address of A/low].

http://csetube.weebly.com/
http://csetube.weebly.com/

The expression can be partially evaluated at compile time if it is rewritten as
ixw+ (base—low x w)

The subexpression ¢ = base — low x w can be evaluated when the declaration of the array is seen.
We assume that c is saved in the symbol table entry for A , so the relative address of A[i] is
obtained by simply adding i x w to c.

Address calculation of multi-dimensional arrays:
A two-dimensional array is stored in of the two forms :
» Row-major (row-by-row)

» Column-major (column-by-column)

Layouts for a 2 x 3 array

t Al1,1] A[11] N
first column

first row A[1,2] Al21] _X—

A[1,3] A[1,2]

A[2,1] A[2,2] segond column
second row Al[2,2] A[1,3]

A[2,3] A[23] third column

(a) ROW-MAJOR (b) COLUMN-MAJOR

In the case of row-major form, the relative address of A[i;, 2] can be calculated by the formula
base + ((i; — low;) X n; i, —lowy) xw

where, low; and low, are the lower bounds on the values of i; and i, and », is the number of
values that i, can take. That is, if Aigh; is the upper bound on the value of i,, then n, = high, —
low, + 1.

Assuming that i; and i, are the only values that are known at compile time, we can rewrite the
above expression as

((i;xny)+i)xw+ (base— ((low;x ny) +low;) xw)
Generalized formula:
The expression generalizes to the following expression for the relative address of A[i}, iy, ...,i]

((...((imx+i)n3+iz)...)n+ix)xw+base—((...((lowny + lowyns+ lows) . . .)
ni + lowy) x w

for all j, n; = high; — low; + 1

http://csetube.weebly.com/
http://csetube.weebly.com/

The Translation Scheme for Addressing Array Elements :
Semantic actions will be added to the grammar :

i) S > L:=E
2 E D E+E

3) E 2 (FE)
4 E>L

(5) L Elist]
6 L >id

(7) Elist 2 Elist, E
(8) Elist 2 id[E

We generate a normal assignment if L is a simple name, and an indexed assignment into the
location denoted by L otherwise :

(1) S2L:=E { if L.offset = null then / * L is a simple id */
emit (L.place : =’ E.place) ;
else
emit (L.place ‘[L.offset ‘1’ ‘: = E.place) }
2) E2?E, +E; { E.place : = newtemp,

emit (E.place ‘: =" E;.place *+’ Ej.place) }
(3) E2(E;) { E.place : = E.place }

When an array reference L is reduced to £, we want the r-value of L. Therefore we use indexing
to obtain the contents of the location L.place [L.offset] :

4) E->L {if L.offset = null then /* L is a simple id*/
E.place : = L.place
else begin

E.place : = newtemp;
emit (E.place ‘: =’ L.place ‘[* L.offset ‘]’)
end }

(5) L 2 Elist] { L.place : = newtemp;
L.offset : = newtemp;
emit (L.place *: = c(Elist.array));
emit (L.offset ‘: =’ Elist.place “*’ width (Elist.array)) }

(6) L =>id { L.place :=id.place;
L.offset := null }

(7) Elist 2 Elist; , E { t:= newtemp;
m : = Elist;.ndim + 1;
emit (t - =" Elist;.place *’ limit (Elist;.array,m));
emit (t - ="t ‘+’ E.place),
Elist.array : = Elist;.array,

http://csetube.weebly.com/
http://csetube.weebly.com/

Elist.place : =t;
Elist.ndim : =m }

(8) Elist 2id [E { Elist.array : = id.place;

Elist.place : = E.place;
Elist.ndim : =1}

Type conversion within Assignments :

Consider the grammar for assignment statements as above, but suppose there are two
types — real and integer , with integers converted to reals when necessary. We have another
attribute E.type, whose value is either real or integer. The semantic rule for E.fype associated
with the production £ 2 E + E is :

E2E+E { Etype : =
if E,.type = integer and
E>.type = integer then integer
else real }

The entire semantic rule for £ = E + E and most of the other productions must be
modified to generate, when necessary, three-address statements of the form x : = inttoreal y,
whose effect is to convert integer y to a real of equal value, called x.

Semantic action for E 2 E; + E;

E.place := newtemp;
if E;.type = integer and E,.type = integer then begin
emit(E.place ‘: =’ E;.place ‘int +’ E,.place);
E.type : = integer
end
else if £E,.type = real and E,.type = real then begin
emit(E.place ‘: =’ E;.place ‘real +’ Ej.place),
E.type : = real
end
else if £,.type = integer and E,.type = real then begin
u. = newtemp,

emit(u ‘: =" ‘inttoreal’ E;.place),
emit(E.place ‘: =" u ‘ real +’ E,.place);
E.type : = real

end
else if £,.type = real and E,.type =integer then begin
u. = newtemp;

emit(u ‘- =’ ‘inttoreal’ E».place);
emit(E.place ‘: =’ E;.place ‘real +’ u);
E.type : = real

end

else

E.type : = type _error;

http://csetube.weebly.com/
http://csetube.weebly.com/

For example, for the input x : =y +1i*]
assuming x and y have type real, and i1 and j have type integer, the output would look like

t; =1 int*]
t3 : = inttoreal t;
ty : =yreal+ t3
X i =1
BOOLEAN EXPRESSIONS

Boolean expressions have two primary purposes. They are used to compute logical
values, but more often they are used as conditional expressions in statements that alter the flow
of control, such as if-then-else, or while-do statements.

Boolean expressions are composed of the boolean operators (and, or, and not) applied
to elements that are boolean variables or relational expressions. Relational expressions are of the
form E; relop E>, where E; and E, are arithmetic expressions.

Here we consider boolean expressions generated by the following grammar :
E->EorE|EandE |notE|(E)]|idrelop id | true | false

Methods of Translating Boolean Expressions:

There are two principal methods of representing the value of a boolean expression. They are :

» To encode true and false numerically and to evaluate a boolean expression analogously
to an arithmetic expression. Often, 1 is used to denote true and 0 to denote false.

» To implement boolean expressions by flow of control, that is, representing the value of a
boolean expression by a position reached in a program. This method is particularly
convenient in implementing the boolean expressions in flow-of-control statements, such
as the if-then and while-do statements.

Numerical Representation

Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from
left to right, in a manner similar to arithmetic expressions.

For example :

» The translation for
a or b and not ¢
is the three-address sequence

t; :=notc
t, :=bandt;
t3:=aort;

» A relational expression such as a <b is equivalent to the conditional statement
ifa<bthen 1 else 0

http://csetube.weebly.com/
http://csetube.weebly.com/

which can be translated into the three-address code sequence (again, we arbitrarily start
statement numbers at 100) :

100: ifa<b goto 103

101: t:=0
102 : goto 104
103: t:=1
104 :

Translation scheme using a numerical representation for booleans

E2EorkE; { E.place : = newtemp;

emit(E.place ‘: =’ E;.place ‘or’ E,.place) }
E2EFEand E, { E.place : = newtemp;

emit(E.place ‘: =’ E;.place ‘and’ E,.place) }
E 2 not E; { E.place : = newtemp;

emit(E.place : =" ‘not’ E;.place) }
E2(E;) { E.place : = E;.place }
E 2id; relop id, { E.place : = newtemp;

emit(‘if” idy.place relop.op idy.place ‘goto’ nextstat + 3);

emit(E.place “: =" 0");

emit(‘goto’ nextstat +2);

emit(E.place “: =" ‘1) }
E 2 true { E.place : = newtemp;

emit(E.place : =" ‘1’) }
E Sfalse { E.place : = newtemp;

emit(E.place : = 0’) }

Short-Circuit Code:

We can also translate a boolean expression into three-address code without generating
code for any of the boolean operators and without having the code necessarily evaluate the entire
expression. This style of evaluation is sometimes called “short-circuit” or “jumping” code. It is
possible to evaluate boolean expressions without generating code for the boolean operators and,
or, and not if we represent the value of an expression by a position in the code sequence.

Translation of a<borc<dande<f

100 : if a < b goto 103 107: tp:=1

101: t,:=0 108 : if e< f goto 111
102 : goto 104 109: t3:=0

103: t;:=1 110 : goto 112

104 : if ¢< d goto 107 111: t3:=1

105: t,:=0 112 : t4: =1, and t3

106 : goto 108 113: ts:=t;or t4

http://csetube.weebly.com/
http://csetube.weebly.com/

Flow-of-Control Statements

We now consider the translation of boolean expressions into three-address code in the
context of if-then, if-then-else, and while-do statements such as those generated by the following
grammar:

S 2 if E then S,
| if E then S, else S;
| while E do S,

In each of these productions, £ is the Boolean expression to be translated. In the translation, we
assume that a three-address statement can be symbolically labeled, and that the function
newlabel returns a new symbolic label each time it is called.

» E.true is the label to which control flows if E is true, and E.false is the label to which
control flows if E is false.

» The semantic rules for translating a flow-of-control statement S allow control to flow
from the translation S.code to the three-address instruction immediately following
S.code.

> S.next is a label that is attached to the first three-address instruction to be executed after
the code for S.

Code for if-then , if-then-else, and while-do statements

to E.true
E.code !
_|_to[E.false
—+—
E.code to E.true E.true: S;.code
E.true : — to E.false
S;.code goto S.next
E false: S,.code
E false :
S.next: <
(a) if-then (b) if-then-else
) 4>
S.begin: E.code to E.true
>
to E.false
E.true: S1.code
goto S.begin
E false:

(c) while-do

http://csetube.weebly.com/
http://csetube.weebly.com/

Syntax-directed definition for flow-of-control statements

PRODUCTION SEMANTIC RULES

S = if E then S; E.true : = newlabel;

E.false : = S.next;

Si.next : = S.next;

S.code : = E.code || gen(E.true *:’) || S;.code

S - if £ then S; else S, E.true : = newlabel;

E.false : = newlabel;

Si.next : = S.next;

So.next : = S.next;

S.code : = E.code || gen(E.true ‘:’) || S;.code ||
gen(‘goto’ S.next) ||
gen(E.false :’) || Sa.code

S = while £ do S, S.begin : = newlabel,;

E.true : = newlabel;

E.false : = S.next;

Sy.next : = S.begin;

S.code : = gen(S.begin *:’)|| E.code ||
gen(E.true *:°) || S;.code ||
gen(‘goto’ S.begin)

Control-Flow Translation of Boolean Expressions:

Syntax-directed definition to produce three-address code for booleans

PRODUCTION SEMANTIC RULES

E>Eork, E . true : = E.true;

E;.false : = newlabel;

Es.true : = E.true;

E,.false : = E.false;

E.code : = Ej.code || gen(E,.false ‘:’) || Es.code

E>E; and E, E.true : = newlabel;

E,.false : = E.false;

E>.true : = E.true;

E>.false : = E.false;

E.code : = Ej.code || gen(E.true *:’) || Es.code

E = not £, Ej.true : = E.false;
E.false : = E.true;
E.code : = E;.code

E->(EIl) Ej.true : = E.true;

http://csetube.weebly.com/
http://csetube.weebly.com/

E,.false : = E.false,
E.code : = E;.code

E - id; relop id, E.code : = gen(‘if’ idy.place relop.op id,.place
‘goto’ E.true) || gen(‘goto’ E.false)
E - true E.code : = gen(‘goto’ E.true)
E - false E.code : = gen(‘goto’ E false)
CASE STATEMENTS

The “switch” or “case” statement is available in a variety of languages. The switch-statement
syntax is as shown below :
Switch-statement syntax

switch expression
begin
case value : statement
case value : statement

case value : statement
default : statement
end

There is a selector expression, which is to be evaluated, followed by » constant values
that the expression might take, including a default “value” which always matches the expression
if no other value does. The intended translation of a switch is code to:

1. Evaluate the expression.
2. Find which value in the list of cases is the same as the value of the expression.
3. Execute the statement associated with the value found.

Step (2) can be implemented in one of several ways :

» By a sequence of conditional goto statements, if the number of cases is small.

» By creating a table of pairs, with each pair consisting of a value and a label for the code
of the corresponding statement. Compiler generates a loop to compare the value of the
expression with each value in the table. If no match is found, the default (last) entry is
sure to match.

» If the number of cases s large, it is efficient to construct a hash table.

» There is a common special case in which an efficient implementation of the n-way branch
exists. If the values all lie in some small range, say imin tO imax, and the number of
different values is a reasonable fraction of iyax - imin, then we can construct an array of
labels, with the label of the statement for value j in the entry of the table with offset j -
imin and the label for the default in entries not filled otherwise. To perform switch,

http://csetube.weebly.com/
http://csetube.weebly.com/

evaluate the expression to obtain the value of j , check the value is within range and
transfer to the table entry at offset j-inin .

Syntax-Directed Translation of Case Statements:

Consider the following switch statement:

switch £
begin
case V;: S
case V>: S,
case V,.;: S,
default: S,
end

This case statement is translated into intermediate code that has the following form :
Translation of a case statement

code to evaluate E into t

goto test
L;: code for S}
goto next
L,: code for S,
goto next
L.i: code for S,,_;
goto next
L,: code for S,
goto next
test : if t=7V; goto L,

if t=17V,goto L,

if t=7V,; goto L,
goto L,
next :

To translate into above form :

» When keyword switch is seen, two new labels test and next, and a new temporary t are
generated.

» As expression FE is parsed, the code to evaluate E into t is generated. After processing F ,
the jump goto test is generated.

» As each case keyword occurs, a new label L; is created and entered into the symbol table.
A pointer to this symbol-table entry and the value V; of case constant are placed on a
stack (used only to store cases).

http://csetube.weebly.com/
http://csetube.weebly.com/

» Each statement case V; : S; is processed by emitting the newly created label L;, followed

by the code for S;, followed by the jump goto next.

» Then when the keyword end terminating the body of the switch is found, the code can be

generated for the n-way branch. Reading the pointer-value pairs on the case stack from
the bottom to the top, we can generate a sequence of three-address statements of the form

case V; L,
case V, L,

case Vy1 Lia
case t L,
label next

where t is the name holding the value of the selector expression E, and L, is the label for
the default statement.

BACKPATCHING

The easiest way to implement the syntax-directed definitions for boolean expressions is

to use two passes. First, construct a syntax tree for the input, and then walk the tree in depth-first
order, computing the translations. The main problem with generating code for boolean
expressions and flow-of-control statements in a single pass is that during one single pass we may
not know the labels that control must go to at the time the jump statements are generated. Hence,
a series of branching statements with the targets of the jumps left unspecified is generated. Each
statement will be put on a list of goto statements whose labels will be filled in when the proper
label can be determined. We call this subsequent filling in of labels backpatching.

To manipulate lists of labels, we use three functions :

1.

makelist(i) creates a new list containing only i, an index into the array of quadruples;
makelist returns a pointer to the list it has made.

merge(p;,p2) concatenates the lists pointed to by p; and p», and returns a pointer to the
concatenated list.

backpatch(p,i) inserts 1 as the target label for each of the statements on the list pointed to

by p.

Boolean Expressions:

We now construct a translation scheme suitable for producing quadruples for boolean

expressions during bottom-up parsing. The grammar we use is the following:

(1)
)
3)
4
)
(6)
(7
(8)

E%E, OI'MEZ
‘ E] aIldMEg
| not E£;
| (ED)
| id; relop id,
| true
| false

M- e

http://csetube.weebly.com/
http://csetube.weebly.com/

Synthesized attributes truelist and falselist of nonterminal E are used to generate jumping code
for boolean expressions. Incomplete jumps with unfilled labels are placed on lists pointed to by
E.truelist and E.falselist.

Consider production £ = E;and M E,. If E; is false, then E is also false, so the statements on
E;.falselist become part of E.falselist. If E; is true, then we must next test £>, so the target for the
statements E.truelist must be the beginning of the code generated for E,. This target is obtained
using marker nonterminal M.

Attribute M.quad records the number of the first statement of E,.code. With the production M -
€ we associate the semantic action

{ M.quad : = nextquad }

The variable nextquad holds the index of the next quadruple to follow. This value will be
backpatched onto the E;.truelist when we have seen the remainder of the production £ = E; and
M E>. The translation scheme is as follows:

(1) E2>Eor ME, { backpatch (E.falselist, M.quad);
E.truelist : = merge(E|.truelist, E,.truelist);
E.falselist : = E,.falselist }

2) E2>Ejand ME, { backpatch (E.truelist, M.quad);
E.truelist : = E;.truelist;
E.falselist : = merge(E).falselist, E>.falselist) }

(3) E-2> notE; { E.truelist : = E|.falselist;
E falselist : = E|.truelist; }

4 E->(E)) { E.truelist : = E.truelist;
E falselist : = E).falselist; }

(5) E - id, relop id, { E.truelist : = makelist (nextquad);
E falselist : = makelist(nextquad + 1),
emit(‘if’ idy.place relop.op id;.place ‘goto)
emit(‘goto ’) }

(6) E - true { E.truelist : = makelist(nextquad),
emit(‘goto_’) }

(7) E - false { E.falselist : = makelist(nextquad);
emit(‘goto) }

8 M-« { M.quad : = nextquad }

http://csetube.weebly.com/
http://csetube.weebly.com/

Flow-of-Control Statements:
A translation scheme is developed for statements generated by the following grammar :

(1) S ifEthenS

2) | if £ then S else S
3) | while £do S

4) | begin L end

) !

(6) L>L;S

(7 | S

Here S denotes a statement, L a statement list, 4 an assignment statement, and E a boolean
expression. We make the tacit assumption that the code that follows a given statement in
execution also follows it physically in the quadruple array. Else, an explicit jump must be
provided.

Scheme to implement the Translation:

The nonterminal E has two attributes E.truelist and E.falselist. L and S also need a list of
unfilled quadruples that must eventually be completed by backpatching. These lists are pointed
to by the attributes L..nextlist and S.nextlist. S.nextlist is a pointer to a list of all conditional and
unconditional jumps to the quadruple following the statement S in execution order, and L.nextlist
is defined similarly.

The semantic rules for the revised grammar are as follows:

(1) S = if E then M; S; N else M, S>
{ backpatch (E.truelist, M;.quad);
backpatch (E.falselist, M,.quad);
S.nextlist : = merge (S;.nextlist, merge (N.nextlist, S».nextlist)) }

We backpatch the jumps when E is true to the quadruple M;.quad, which is the beginning of the
code for S;. Similarly, we backpatch jumps when E is false to go to the beginning of the code for
S,. The list S.nextlist includes all jumps out of S| and S,, as well as the jump generated by N.

2) N->¢ { N.nextlist : = makelist(nextquad);
emit(‘goto) }

3 M->c¢ { M.quad : = nextquad }

4) S->ifEthen MS, { backpatch(E.truelist, M.quad),

S.nextlist : = merge(E.falselist, S;.nextlist) }

(5) S > while M; Edo M, S; { backpatch(S;.nextlist, M;.quad);
backpatch(E.truelist, M>.quad);
S.nextlist : = E.falselist
emit(‘goto’ M;.quad) }

(6) S begin L end { S.nextlist : = L.nextlist }

http://csetube.weebly.com/
http://csetube.weebly.com/

(7 S->4 { S.nextlist : = nil }
The assignment S.nextlist : = nil initializes S.nextlist to an empty list.

® L>LI;MS { backpatch(L;.nextlist, M.quad);
L.nextlist : = S.nextlist }

The statement following L; in order of execution is the beginning of S. Thus the L/.nextlist list is
backpatched to the beginning of the code for S, which is given by M.quad.

9 L->S { L.nextlist : = S.nextlist }

PROCEDURE CALLS

The procedure is such an important and frequently used programming construct that it is
imperative for a compiler to generate good code for procedure calls and returns. The run-time
routines that handle procedure argument passing, calls and returns are part of the run-time
support package.

Let us consider a grammar for a simple procedure call statement

(1) S Scallid (Elist)
(2) Elist 2 Elist, E
(3) Elist 2 FE

Calling Sequences:

The translation for a call includes a calling sequence, a sequence of actions taken on entry
to and exit from each procedure. The falling are the actions that take place in a calling sequence :

» When a procedure call occurs, space must be allocated for the activation record of the
called procedure.

» The arguments of the called procedure must be evaluated and made available to the called
procedure in a known place.

» Environment pointers must be established to enable the called procedure to access data in
enclosing blocks.

» The state of the calling procedure must be saved so it can resume execution after the call.

» Also saved in a known place is the return address, the location to which the called
routine must transfer after it is finished.

» Finally a jump to the beginning of the code for the called procedure must be generated.
For example, consider the following syntax-directed translation

(1) S 2callid (Elist)
{ for each item p on queue do
emit (' param’p);

http://csetube.weebly.com/
http://csetube.weebly.com/

emit (‘call " id.place) }
(2) Elist 2 Elist , E

{ append E.place to the end of queue }

(3) Elist > E
{ initialize queue to contain only E.place }

» Here, the code for S is the code for Elist, which evaluates the arguments, followed by a
param p statement for each argument, followed by a call statement.

» queue is emptied and then gets a single pointer to the symbol table location for the name
that denotes the value of E.

http://csetube.weebly.com/
http://csetube.weebly.com/

/3jn“mg an(Qxypé? \(’m('(’ﬂ

Tke “pvwmp e QLH" 2NENTE f(/)ci% A a/r& @) Q&v\g é
AG £ ' v Sl ..(* PRone lemesds ()JZCR /ngoz — ,A_
- pod VPR |

A@ B - (AL)B) N\ (AAEQ

an

AD L = (A\B) U (®\4)

|
AP i SRl
Forlamedl Q0.5 -

wQamWﬁﬂlyAQ‘(-_-‘Am

11 /\nz /\4 ! m &1&3,4.:40.1/1,.:
G psbe PRI :

i) TRere ane pm = QZC,QW@MQEP-

)%%DX&WWMJW

“) The ‘universL aed) an Phe umion i‘lz"'uw
@JDQJ«ZP—/

!

/{/ waxﬂi 6)"“‘&‘29— cj&:PQe /Je;p'— ¢

0 = pAoBNc , = AnBacS ,'@,': A/\B(AC/W,,:AIIB%Cc

; 7 ¢ ¥ie
#y = AnBac , @ =A% Bne, 6 :‘A“na ncjfgézﬁenc

[~ PR b e i A O ke o e

e 2 Rl

T0emgotsnd~ lacas = (18) ALK =4 Anh = A
Aoweicdie > (2) (B uB)ve= Av(ruc) £0) (Ang)ac =An(Bnc)

Commdsdne 6 AvB = BuA (&) A0R=BNA .
Vlrildie : (D) Av(enc) @u@n(m;c)@ A0 (200) =(A2E)A

Loem%]) Augf-A 69 Anv = A
63 AvL=U ang =g

Tmuolidiom - @@9(: R "
&"U’&"G'CPJ.'@»AL)AC;(‘)‘ @ AAAC:/
@ - = 7
g Gl AR
%E:.gm% : (fo) @U@C @ (AA@C.
DA Y = 4B,
(Bf o Desnopgants bos 3 |
Gog” - i) f (495
- felef

By
jQ’W”' EJAM%J—M’%»
4 £ @b Me em M ’5\) ’ﬂﬂ‘%sé“‘k

,-'lllv"

, U;(\/‘Q({ 'ﬁ! h U/MQ b

(UM) SR T o)
TR‘-M&A-AO ‘

(ﬂUA)(\CBUA—)
Oéxwe DR e prins sim lacan an Bhe AT
A R oo . W THin Mbawgr; ﬁ%e&ﬁ,mﬁg
e Gunggte LE | PRt~ if- an epation E o an 20543
: L)

IRon i LDl £X o) dllso an 2

fiias-
p '_4\

L

T fuly Al e it [
AL Pue sl g iPass 7] c-T5g 284 4
D=Lz 52093) E4f 84688 ‘F'L{‘:mj

L) ALE, u) 4/\8 uy Aue 5) Anc)v};?qr.,’) -
i o \\

/I) A J BC /;D E | 4 1 \““»:.““‘\i,..

U“) A\B, BAp '.D\E'l. \
K ADE , COD ;,E@F |

0 o
I oy £ 198
' GCE neok) Mew el
45
49

I 8) G0 SR iv. 2 gale ol aff&ﬁ‘mgﬁ’ﬁ&vxf J

l (v gaines
:9(70 PRe CorncPme . :P(F?a& i R anL}QQ |
t’,jm .x’_alm 4 VCMQZAM aJZg»z NT F_-
Lovstes :Paeoaf% =f (P@U,[?e oy e wowee] Ty,
FosPame AL "’G"T"ﬁ_—%

) &&W&M&lw@%

{

‘ O \ ‘
: @R \
! '\’ 1' .
IR Qe i b
R R R
’ Y b Il {
|
|

B 2oel diribpce mﬁz‘ LAY
D810 nenl Newseck ol Tonen G- Imad o m
05-8 = F . al NG ey K Tadaonk/ (17 N AER]
PENT R 1'5"’&;'?
65- 19 8-} 79.8 Lo \;X

L5 — 12 484 7 ""8%"@) ‘1!
4173 = 30aal _

J .
" ¢ ,. l
C) 0 Q) “% Pl A %'0)
P\ il)é/' 5] U
» i ; ! .‘ ! ‘I é "1

LA\

(]

Notes: Relational Algebra

Relational Query Languages

Relational query languages use relational algebra to break the user requests and instruct
the DBMS to execute the requests. It is the language by which user communicates with
the database. These relational query languages can be procedural or non-procedural.

Procedural Query Language

A procedural query language will have set of queries instructing the DBMS to perform
various transactions in the sequence to meet the user request.

For example, get. CGPA procedure will have various queries to get the marks of student in
each subject, calculate the total marks, and then decide the CGPA based on his total marks.
This procedural query language tells the database what is required from the database and
how to get them from the database. Relational algebra is a procedural query language.

Non-Procedural Query Language

Non-procedural queries will have single query on one or more tables to get result from
the database. For example, get the name and address of the student with particular ID
will have single query on STUDENT table. Relational Calculus is a non-procedural
language which informs what to do with the tables, but doesn’t inform how to accomplish
this.

These query languages basically will have queries on tables in the database. In the
relational database, a table is known as relation. Records / rows of the table are referred
as tuples. Columns of the table are also known as attributes. All these names are used
interchangeably in relational database.

Relational Algebra

Relational algebra is a procedural query language. It takes one or more relations / tables
and performs the operation and produce the result. This result is also considered as a
new table or relation. Suppose we have to retrieve student name, address and class for
the given ID. What a relational algebra will do in this case is, it filters the name, address
and class from the STUDENT table for the input ID. In mathematical terms, relational
algebra has produced a subset of STUDENT table for the given ID.

Relational algebra will have operators to indicate the operations. This algebra can be
applied on single relation - called unary or can be applied on two tables - called binary.
While applying the operations on the relation, the resulting subset of relation is also
known as new relation. There can be multiple steps involved in some of the operations.
The subsets of relations at the intermediary level are also known as relation. We will
understand it better when we see different operations below.

Relational Algebra in DBMS has 6 fundamental operations. There are several other
operations defined upon these fundamental operations.

DBMS NOTES | Prepared by Sathi Ball

Select (6) - This is a unary relational operation. This operation pulls the horizontal
subset (subset of rows) of the relation that satisfies the conditions. This can use operators
like <, >, <=, >=, = and != to filter the data from the relation. It can also use logical AND, OR
and NOT operators to combine the various filtering conditions. This operation can be
represented as below:
cp(r)

Where o is the symbol for select operation, r represents the relation/table, and p is the
logical formula or the filtering conditions to get the subset. Let us see an example as
below:

O'STD_NAME = “James” (STUDENT)
What does above relation algebra do? It selects the record /tuple from the STUDENT table
with Student name as ‘James’

G dept_id = 20 AND salary>=10000 (EMPLOYEE)
- Selects the records from EMPLOYEE table with department ID = 20 and employees
whose salary is more than 10000.

Project (J]) - This is a unary operator and is similar to select operation above. It creates
the subset of relation based on the conditions specified. Here, it selects only selected
columns/attributes from the relation- vertical subset of relation. The select operation
above creates subset of relation but for all the attributes in the relation. It is denoted as

below:

nal, a2,a3 (l‘)
Where [] is the operator for projection, r is the relation and a1, a2, a3 are the attributes
of the relations which will be shown in the resultant subset.

nstd_name, address, course (STUDENT) -
This will select all the records from STUDENT table but only selected columns -
std_name, address and course. Suppose we have to select only these 3 columns for
particular student then we have to combine both project and select operations.

"STD_ID, address, course (0' STD_NAME = "]ames"(STUDENT))

- this selects the record for ‘James’ and displays only std_ID, address and his course
columns. Here we can see two unary operators are combined, and it has two operations
performing. First it selects the tuple from STUDENT table for James’. The resultant subset
of STUDENT is also considered as intermediary relation. But it is temporary and exists till
the end of this operation. It then filters the 3 columns from this temporary relation.

Rename (p) - This is a unary operator used to rename the tables and columns of a
relation. When we perform self join operation, we have to differentiate two same tables.
In such case rename operator on tables comes into picture. When we join two or more
tables and if those tables have same column names, then it is always better to rename the
columns to differentiate them. This occurs when we perform Cartesian product
operation.
Pr(E)

Where p is the rename operator, E is the existing relation name, and R is the new relation
name.

p sTupent (STD_TABLE) - Renames STD_TABLE table to STUDENT

DBMS NOTES | Prepared by Sathi Ball

Programming in JAVA

((= Java Lectureon

»

({§
JAVA Inheritance

Prof. Mithun Roy

Inheritance in Java

Inheritance in Java is a mechanism in which one object acquires all the
properties and behaviours of a parent object. It is an important part
of OOPs (Object Oriented programming system).

The idea behind inheritance in Java is that you can create new classes that are
built upon existing classes. When you inherit from an existing class, you can reuse
methods and fields of the parent class. Moreover, you can add new methods and
fields in your current class also.

Inheritance represents the IS-A relationship which is also known as a parent-
child relationship.

Why use inheritance in java
*For Method Overriding (so runtime polymorphism can be achieved).
*For Code Reusability.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 2

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/method-overriding-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java

Terms used in Inheritance

*Class: A class is a group of objects which have common properties. It is a template
or blueprint from which objects are created.

*Sub Class/Child Class: Subclass is a class which inherits the other class. It is also
called a derived class, extended class, or child class.

*Super Class/Parent Class: Superclass is the class from where a subclass inherits
the features. It is also called a base class or a parent class.

*Reusability: As the name specifies, reusability is a mechanism which facilitates
you to reuse the fields and methods of the existing class when you create a new
class. You can use the same fields and methods already defined in the previous
class.

The syntax of Java Inheritance

1.class Subclass-name extends Superclass-name

2.4
3. //methods and fields

4.}

The extends keyword indicates that you are making a new class that derives
from an existing class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called a parent or
superclass, and the new class is called child or subclass.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 4

Java Inheritance Example

As displayed in the above figure, Programmer is the subclass and Employee is the
superclass. The relationship between the two classes is Programmer IS-A
Employee. It means that Programmer is a type of Employee.

1.class Employege{
E 2. float salary=40000;
3.}

Employee

salary: float

o A o 5. int bonus=10000;

4.class Programmer extends Employee{

~ 6. public static void main(String args[]){

Programmer 7. Programmer p=new Programmer();

bonus: int 8. System.out.printin("Programmer salary is:"+p.salary);

_) 9. System.out.printin("Bonus of Programmer is:"+p.bonus);
10.}
11.}

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 5

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single, multilevel and

hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface only.
We will learn about interfaces later.

ClassA ClassA ClassA ClassA ClassB ClassA
i i / '\ '\ / / '\
ClassB ClassC ClassB ClassC
ClassB ClassB ClassC
1) Single I 3) Hierarchical \ /
4) Multiple ClassD
ClassC
5) Hybrid
2) Multilevel }Hy
16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 6

Single Inheritance Example

When a class inherits another class, it is known as a single inheritance. In the
example given below, Dog class inherits the Animal class, so there is the single

inheritance.
1.class Animal{

2.void eat(){System.out.printin("eating...");}
3.}

4.class Dog extends Animal{

5.void bark(){System.out.printin("barking...");}
6.}

Output:
/.class Testlnheritance{
8.public static void main(String args[]){ ::tril:gg---

9.Dog d=new Dog();
10.d.bark();
11.d.eat();
12.}}

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 7

Multilevel Inheritance Example

When there is a chain of inheritance, it is known as multilevel inheritance. As you can see
in the example given below, BabyDog class inherits the Dog class which again inherits the
Animal class, so there is a multilevel inheritance.

1.class Animal{

2.void eat(){System.out.printin("eating...");}
3.}

4.class Dog extends Animal{

5.void bark(){System.out.printin("barking...");}

6.} Output:
7.class BabyDog extends Dog{ _
8.void weep(){System.out.printin("weeping...");} weeping...
9.} barking...
10.class Testlnheritance2{ eating...

11.public static void main(String args[]){
12.BabyDog d=new BabyDog();
13.d.weep();

14.d.bark();

15.d.eat();

16.}}

Hierarchical Inheritance Example

When two or more classes inherits a single class, it is known as hierarchical inheritance. In
the example given below, Dog and Cat classes inherits the Animal class, so there is
hierarchical inheritance.

16-06-2021

1.class Animal{

2.void eat(){System.out.printin("eating...");}
3.}

4.class Dog extends Animal{

5.void bark(){System.out.printin("barking...");}
6.}

7.class Cat extends Animal{

8.void meow(){System.out.printin("meowing...");}
9.}

10.class Testlnheritance3{

11.public static void main(String args[]){
12.Cat c=new Cat();

13.c.meow();

14.c.eat();

15.//c.bark();//C.T.Error

16.}}

Compiled By Prof. Mithun Roy, Department of CSE, SIT

Output:

meowing...
eating...

Q) Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not supported in java.
Consider a scenario where A, B, and C are three classes. The C class inherits A and B classes. If A and
B classes have the same method and you call it from child class object, there will be ambiguity to call
the method of A or B class.

Since compile-time errors are better than runtime errors, Java renders compile-time error if you
inherit 2 classes. So whether you have same method or different, there will be compile time error.

1.class A{

2.void msg(){System.out.printin("Hello");}

3.}

4.class B{

5.void msg(){System.out.printin("Welcome");}
6.}

7.class C extends A,B{//suppose if it were

8.

9. public static void main(String args[]){

10. C obj=new C();

11. obj.msg();//Now which msg() method would be invoked?
12.}

13.}

Super Keyword in Java

The super keyword in Java is a reference variable which is used to refer immediate
parent class object.

Whenever you create the instance of subclass, an instance of parent class is created
implicitly which is referred by super reference variable.

Usage of Java super Keyword
1.super can be used to refer immediate parent class instance variable.

2.super can be used to invoke immediate parent class method.
3.super() can be used to invoke immediate parent class constructor.

1) super is used to refer immediate parent class instance variable.

We can use super keyword to access the data member or field of parent class. It is used if
parent class and child class have same fields.

1.class Animal{
2.String color="white";
3.}

4.class Dog extends Animal{

5.String color="black";
6.void printColor(){

7.System.out.printin(color);//prints color of Dog class
8.System.out.printin(super.color);//prints color of Animal cl

ass
9.}

10.}

11.class TestSuperl{

12.public static void main(String args[]){

13.Dog d=new Dog();
14.d.printColor();
15.}}

16-06-2021

Compiled By Prof. Mithun Roy, Department of CSE, SIT

In the above example, Animal
and Dog both classes have a
common property color. If we
print color property, it will print
the color of current class by
default. To access the parent
property, we need to use super
keyword.

12

2) super can be used to invoke parent class method

The super keyword can also be used to invoke parent class method. It should be used if
subclass contains the same method as parent class. In other words, it is used if method is
overridden.

1.class Animal{

2.void eat(){System.out.printin("eating...");}

3.}

4.class Dog extends Animal{

5.void eat(){System.out.printin("eating bread...");}
6.void bark(){System.out.printin("barking...");}
7.void work(){

8.super.eat();

9.bark(); In the above example Animal and Dog
ﬂi both classes have eat() method if we call

eat() method from Dog class, it will call

12.class TestSuper2
ol the eat() method of Dog class by default

13.public static void main(String args[]){

14.Dog d=new Dog(); because priority is given to local.
15.d.work(); To call the parent class method, we need
16.}} to use super keyword.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 13

3) super is used to invoke parent class constructor.

The super keyword can also be used to invoke the parent class constructor. Let's see a
simple example:

1.class Animal{
2.Animal(){System.out.printin("animal is created");}
3.}

4.class Dog extends Animal{

5.Dog(){

6.super();

7.System.out.printin("dog is created");

8.}

9.}

10.class TestSuper3{

11.public static void main(String args[]){
12.Dog d=new Dog();

13.}}

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 14

As we know well that default constructor is provided by compiler automatically if there is
no constructor. But, it also adds super() as the first statement.

Another example of super keyword where super() is provided by the compiler implicitly.

1.class Animal{
2.Animal(){System.out.printin("animal is created");}
3.}

4.class Dog extends Animal{

5.Dog({

6.System.out.printin("dog is created");

7.}

8.}

9.class TestSuper4{

10.public static void main(String args[]){
11.Dog d=new Dog();

12.}}

Aggregation in Java

If a class have an entity reference, it is known as Aggregation. Aggregation represents
HAS-A relationship.

Consider a situation, Employee object contains many information such as id, name,
emailld etc. It contains one more object named address, which contains its own
information such as city, state, country, zipcode etc. as given below.

1.class Employee{

2.int id;

3.String name;

4. Address address;//Address is a class
5....

6.}

In such case, Employee has an entity reference address, so relationship is Employee
HAS-A address.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 16

Why use Aggregation?
For Code Reusability.

Simple Example of Aggregation

In this example, we have created the reference of

Operation class in the Circle class.

Circle

Cperationop

double pi

arealintradius) -

Operation

|- » square(int n]

1.class Operation{

2. int square(int n){

3. return n*n;

4.}

5.}

6.class Circle{

7. Operation op;//aggregation

8. double pi=3.14;

9.

10. double area(int radius){

11. op=new Operation();

12. int rsquare=op.square(radius);//code reusabil
ity (1.e. delegates the method call).
13. return pi*rsquare;

14.}

15.

16. public static void main(String args[]{
17. Circle c=new Circle();

18. double result=c.area(5);

19. System.out.printin(result);
20. }

21.}

When use Aggregation?

Code reuse is also best achieved by aggregation when there is no is-a
relationship.

Inheritance should be used only if the relationship is-a is maintained throughout
the lifetime of the objects involved; otherwise, aggregation is the best choice.

Understanding meaningful example of Aggregation

In this example, Employee has an object of Address, address object contains its own

information such as city, state, country etc. In such case relationship is Employee
HAS-A address.

16-06-2021

Thank You

Compiled By Prof. Mithun Roy, Department of CSE, SIT

19

8/25/2017 Lecture 21: Single Source Shortest Paths - Bellman-Ford Algorithm

B®el rﬁgm]feo%}]gfg(%lft })nurce Shortest Paths -

CS 360 — Lecture Notes — Lecture 21

MST solves the problem of finding a minimum total weight subset of edges that spans all the vertices.
Another common graph problem is to find the shortest paths to all reachable vertices from a given source.
We have already seen how to solve this problem in the case where all the edges have the same weight (in
which case the shortest path is simply the minimum number of edges) using BFS. Now we will examine
two algorithms for finding single source shortest paths for directed graphs when the edges have different
weights - Bellman-Ford and Dijkstra's algorithms. Several related problems are:

¢ Single destination shortest path - find the transpose graph (i.e. reverse the edge
directions) and use single source shortest path

e Single pair shortest path (i.e. a specific destination) - asymptotically this problem can be
solved no faster than simply using single source shortest path algorithms to all the
vertices

e All pair shortest paths - one technique is to use single source shortest path for each
vertex, but later we will see a more efficient algorithm

Single Source Shortest Path

Problem
Given a directed graph G(V,E) with weighted edges w(u,v), define the path weight of a path p as

k

W(p)zz w(vf—lsvf)

i=1

For a given source vertex s, find the minimum weight paths to every vertex reachable from s denoted

_| min{w(p) s—v]
6(s.v) oo otherwise

The final solution will satisfy certain caveats:

e The graph cannot contain any negative weight cycles (otherwise there would be no
minimum path since we could simply continue to follow the negative weight cycle
producing a path weight of -o0).

¢ The solution cannot have any positive weight cycles (since the cycle could simply be
removed giving a lower weight path).

e The solution can be assumed to have no zero weight cycles (since they would not affect
the minimum value).

Therefore given these caveats, we know the shortest paths must be acyclic (with < |V] distinct vertices) = <
|V] - 1 edges in each path.

http://faculty.ycp.edu/~dbabcock/PastCourses/cs360/lectures/lecture21.html 1/5

8/25/2017 Lecture 21: Single Source Shortest Paths - Bellman-Ford Algorithm

Generic Algorithm

The single source shortest path algorithms use the same notation as BFS (see lecture 17) with predecessor &
and distance d fields for each vertex. The optimal solution will have v.d = d(s,v) forall v € V.

The solutions utilize the concept of edge relaxation which is a test to determine whether going through edge
(u,v) reduces the distance to v and if so update v.rt and v.d. This is accomplished using the condition

if vd >ud+w(u,v)
vd =ud+w(u,v)

VI =1Uu

Bellman-Ford Algorithm

The Bellman-Ford algorithm uses relaxation to find single source shortest paths on directed graphs that
may contain negative weight edges. The algorithm will also detect if there are any negative weight cycles
(such that there is no solution).

BELLMAN-FORD(G,w,s)
1 INITIALIZE-SINGLE-SOURCE(G,s)
2. fori=1 to |G.V]-1

3 for each edge (u,v) € G.E
4. RELAX(u,Vv,w)

5. for each edge (u,v) € G.E

6 if v.d > u.d + w(u,v)

7 return FALSE

8 return TRUE

INITIALIZE-SINGLE-SOURCE(G,s)
1. for each vertex v € G.V

2 v.d = o

3. v.pi = NIL

4. s.d =0

RELAX(u,Vv,w)

1. if v.d > u.d + w(u,v)
2. v.d = u.d + w(u,v)
3. v.pi = u

Basically the algorithm works as follows:

1. Initialize d's, ©'s, and set s.d = 0 = O(V)

2. Loop |V]-1 times through all edges checking the relaxation condition to compute
minimum distances = (|V]-1) O(F) = O(VE)

3. Loop through all edges checking for negative weight cycles which occurs if any of the
relaxation conditions fail = O(F)

http://faculty.ycp.edu/~dbabcock/PastCourses/cs360/lectures/lecture21.html 2/5

8/25/2017 Lecture 21: Single Source Shortest Paths - Bellman-Ford Algorithm
The run time of the Bellman-Ford algorithm is O(V + VE + E) = O(VE).

Note that if the graph is a DAG (and thus is known to not have any cycles), we can make Bellman-Ford
more efficient by first topologically sorting G (O(V+E)), performing the same initialization (O(})), and
then simply looping through each vertex u in topological order relaxing only the edges in Adj[u] (O(E)).
This method only takes O(V + E) time. This procedure (with a few slight modifications) is useful for
finding critical paths for PERT charts.

Example

Given the following directed graph

(1,3)=6
14)=3
@) @ [
gt no| ||
(52 =4 e e e e
@ @ {5I4]=2

Iteration I: Edges (us,uy) and (us,uy4) relax updating the distances to 2 and 4

@ 4 (1,3)=6 1 2 3 4 5
“*...H (1.4)=23
- 21)=3
ot d |= |4 |=|2]0
g 2= n |/ |5 |15]
-
2 (52)=4 e ———
(5,4)=2

Iteration 2: Edges (uy,u;), (ug,uy) and (uy,u3) relax updating the distances to 1, 2, and 4 respectively. Note

edge (uy,u5) finds a shorter path to vertex 2 by going through vertex 4

http://faculty.ycp.edu/~dbabcock/PastCourses/cs360/lectures/lecture21.html 3/5

8/25/2017 Lecture 21: Single Source Shortest Paths - Bellman-Ford Algorithm

b
0

(1,3)=86 1 2 3 4 5
(1.4)=3
(21)=3

(I (3,4)=2 d 7 3 3 2 0

! P Eﬂ%:} n|2|4|a|5]|/

1 "’2 (5,2 =4 e e e
—_—— 54)=2

Iteration 3: Edge (u,,u;) relaxes (since a shorter path to vertex 2 was found in the previous iteration)

updating the distance to 1

(%]

2w
mnu
O

%]

%]

I

on

LY

A9

A1
FEUN
Lrse =
inmnnun
- [g]
o | o
| o
| w
| w
en | no
- | o

4
LY
LY
3]
o
B
o
[-

Iteration 4: No edges relax

x
[
2050
o

LY

A

A1
EETN
whe
im o nn

P G L O

= | o
| o
| ow
| w
| oro
- | o

i
I
-
I
i
I
LY
A}
na
oo
=
o
SRS

The final shortest paths from vertex 5 with corresponding distances is

(8 =&
O
=3
=3}
L
Ca
na
=

http://faculty.ycp.edu/~dbabcock/PastCourses/cs360/lectures/lecture21.html 4/5

8/25/2017 Lecture 21: Single Source Shortest Paths - Bellman-Ford Algorithm

Negative cycle checks: We now check the relaxation condition one additional time for each edge. If any of
the checks pass then there exists a negative weight cycle in the graph.

wd>upd+w(1,3)=24>6+6=12V
vad>upd+w(1,4)=>256+3=9
vid> uyd +w(2,1) = 63 +3 =6
vad>uzd+w(3,4)=>2>3+2=5V
Vo.d>ugd+wéd2)=>3>2+1=3V
vad>ugpd+wé3)=>352+1=3
Vo.d > us.d+w(5.2) =350+ 4=4
vad>usd+w(5,4)=2>0+2=2V

Note that for the edges on the shortest paths the relaxation criteria gives equalities.

Additionally, the path to any reachable vertex can be found by starting at the vertex and following the «'s
back to the source. For example, starting at vertex 1, u|.mw =2, up.n =4, uy.m = 5 = the shortest path to

vertex 11is {5,4,2,1}.

http://faculty.ycp.edu/~dbabcock/PastCourses/cs360/lectures/lecture21.html 5/5

Formal Language & Automata Theory
PCC-CS 403

Topic: Finite Automata [FA]
[DFA to RE (Arden’s Theorem)]

Lecture - XII
Prof. Mithun Roy

5/31/2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT, Siliguri 1

Arden’s Theorem

Statement -
Let P and Q be two regular expressions.
[f P does not contain null string, then R = Q + RP has a unique solution that is R = QP*

Proof -
R =Q + (Q + RP)P [After putting the value R = Q + RP]

= Q + QP + RPP

When we put the value of R recursively again and again, we get the following
equation —

R=Q+ QP+ QP2+ QPs.....
R=Q(e+P+P2+P3+...)
R = QP* [As P* represents (e + P+ P2 + P3 + ...} |

Hence, proved.

Assumptions for Applying Arden’s Theorem
*The transition diagram must not have NULL transitions

[t must have only one initial state

Method

Step 1 - Create equations as the following form for all the states of the DFA having n states with
initial state q;.

q1 = 91 Ry; + @Ry + o+ q R €

Az = q1R + Ry + . + QR

qd, = quln i qZRZn Tt annn
R;; represents the set of labels of edges from q; to q;, if no such edge exists, then R;; = @

Step 2 - Solve these equations to get the equation for the final state in terms of R

Example - I
Construct a regular expression corresponding to the automata given below -

b a,b

a a ~,.

Here the initial state and final state is q,,.
The equations for the tow states q0 and q1 are as follows -

qo = qob+ € (i)
d1 = qoa+qy(a+b) - (ii)

From equation (i)R=qy,Q =€,P=b=>qy =€ +qyb=qy =€ b* =b"
From (ii),q; = b*a+ q;(a+b) = q; = b*a(a + b)*

So, The REisb*a(a + b)*

Example - 11

Construct a regular expression corresponding to the automata given below -

Here the initial state and final state is q;.
The equations for the three states ql, q2, and g3 are as
follows -

q; =quat+qzat+é&

(¢ move is because q1 is the initial state)
q, =q:b +q,b+q3b

4z = (4

d2 = q1b + q;b + gzab

= q.b + g,(b + ab)
R=q,,Q=q.b,P=(b+ab)
Using the Arden’s

dz = q:b(b + ab)”

d3 = qza = q;b(b + ab)"a

Finally,
q; = qia + q;b(b + ab)*aa+ €
q; = € +q,(a+ b(b + ab)*aa)
Using the Arden’s
q; = (a+ b(b + ab)*aa)*

So,R=(a+ b(b + ab)*aa)*

Example - 111
Construct a regular expression corresponding to the automata given below -

Here the initial state and final state is q,.
The equations for the three states q1, g2, and g3 are as

ﬂ s follows -
A - . g1 = € +q:0 — ()
1
/N/\ dz = q11+q,0 — (ii)
qs = g0 + q3(0 + 1) — (iii)

From (i), g; = 0%, (Using Arden’s)

R = 0°10*
So,q, = 0*1 + q,0 = 0*10*

Example - IV
Construct a regular expression corresponding to the automata given below -

0.1
Start . @ @ From (i) q; = 0"

So,q, =01+ q,1 =0"11"
Here the initial state and final state is q;.
The equations for the three states q1, g2,and Here, q, is not depends on q;

q3 are as follows -

So, R=0%11"
q; =€ +q.0 — (i)

qz = q11+qp1 — (i)
qz = g0 + q3(0 + 1) — (iii)

Example - V
Construct a regular expression corresponding to the automata given below -

AL O .
From (iii), we put, B = Cb(ba*a + b),
o.e. So we get,C =€ + Cb(ba*a + b)a
5 b
A = Bb + Aa+ € —(i) Finally, C = (b(ba*a + b)a)*
B = Aa+ Cb + Bb — (ii) _
C = Ba — (iii) Regular Expression

R=(b(ba*a+ b)a)"
From (i), A = Bba*

From (ii), we put A = Bba*, So, we get, B
= Cb + Bba*a+ Bb = Cb + B (ba*a + b)
So,B = Cb(ba*a + b)*

Example - VI
Construct a regular expression corresponding to the automata given below -

Finally,

q a ‘/F\ q; +q; = b*a (b +aa)* +b*a (b +aa)*a
" >
a = b*a(b + aa)*(e +a) =b*a(b+aa)*a

So, The Regular Expression is

r=Db*a(b+aa)*a
do = € +qob — (i)
d1 = qoa + qib + gza — (i)
qz = qia — (iii)

From (i) qo= b*, (Using Arden’s)
From (ii) g; = b*a+ q;b + q;aa =b*a+ q;(b + aa) = b*a(b + aa)”
From (iii) g, = b*a (b + aa)*a

Homework - X
Draw a FA from the RE = ab*(a + ba*)* a

Q"0 "0 @
‘ d

(a+ba*)

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 10

Homework - XI

Construct a regular expression corresponding to the automata given below -

Thank You

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 11

Binary Search Tree
Paper Name : Data Structure and Algorithm
Paper Code : C5302

Department of Information Technology
Siliguri Institute of Technology

September 4, 2019

Outlines

Definition

v

v

Representation

» Operation

v

Complexity

v

Application

Definition
» Definition : A Binary search Tree is a Binary Tree in which
every node value grater than of its right child and less then of
its left child.
» Example :

Figure: Example of Binary Search Tree.

Representation
A Binary search Tree can represent in two way: array
representation and Linked list representation
» Array Representation:

30 [20 [40 |10 [25 [- [- [5 |- [23[27]

Table: Array Representation of BST

» Linked list Representation:

[
@
ra

Figure: linked list Representation

Operation of BST

In BST there are four basic operation: Traversal, searching, Insert
a node, Delete a node

» Traversal:

» Searching:

v

Insert a node:

v

Delete a node:

Traversal
Traversal means visiting each node exactly once.

Figure: Example of Binary Search Tree.

> In Order Traversal: The traversing sequence is
5,10,20,23,25,27,30,40

» Pre Order Travercal- The travercino cediience 1c

Search a node from BST

Search a node from a Tree means the desired node exist or not in a
BST. Two way to search a node : recursive way and Non recursive

way.

Figure: SearchNode25and21

Algorithm for Searching

Algorithm 1 Recursive Search algorithm

INPUT: Binary search Tree (T) and current node i.e present node
PN under scanning . Searched item/key is K

OUTPUT: KEY ELEMENT FOUND if the function return 1 i.e K
in T other wise KEY ELEMENT NOT FOUND the function return
0.

Recursive Searching(TNode x PN,K)
if PN == NULL then

Return 0
else if K == PN — Data then

Return 1
else if K < PN — Data then

Return Recursive Searching(PN — Lchild, K)
else

Return Recursive Searching(PN — Rchild, K)
end if

Insert a node in a BST

Insert 30
—

Insert 20

®®

Insert 40
—

l

Insert 10 (10 25
et

Insert 25
—

&—®

Delete a node from a BST

During delete a node there are three possibility :
i) Deleted node does not have any child

ii) Deleted node have only one child

iii)Deleted node have two child

» No child:

—

Delete One child

—

Figure: Detete 10 from Binary Search Tree.

Delete Two child

@'@ @ Delete 20
—

Figure: Detete 20 from Binary Search Tree.

Complexity of BST

Table: Complexity of BST operations

Operations | Best Case Average Worst Case
Case

Traversal O(N) O(N) O(N)

Searching 0(1) O(log N) O(N)

Insert 0(1) O(log N) O(N)

Delete 0(1) O(log N) O(N)

Applications of BST

(i) BST Used in many searching application where data is
constantly entering or leaving such as map and set object in many
language library

(ii) Storing a set of Names and being able to look up based on a
prefix of the name.

(iii) BST is Used to express arithmetic expressions

(iv) To implement Huffman Coding Algorithm Binary search tree is
used

Thank You

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

