
Binary Search Tree

Paper Name : Data Structure and Algorithm
Paper Code : CS302

Department of Computer science & Engineering
Siliguri Institute of Technology

September 4, 2019

Outlines

I Definition

I Representation

I Operation

I Complexity

I Application

Definition
I Definition : A Binary search Tree is a Binary Tree in which

every node value grater than of its right child and less then of
its left child.

I Example :

30

20

10

05

25

23 27

40

Figure: Example of Binary Search Tree.

Representation
A Binary search Tree can represent in two way: array
representation and Linked list representation

I Array Representation:

30 20 40 10 25 - - 5 - 23 27

Table: Array Representation of BST

I Linked list Representation:

Figure: linked list Representation

Operation of BST

In BST there are four basic operation: Traversal, searching, Insert
a node, Delete a node

I Traversal:

I Searching:

I Insert a node:

I Delete a node:

Traversal
Traversal means visiting each node exactly once.

30

20

10

05

25

23 27

40

Figure: Example of Binary Search Tree.

I In Order Traversal:The traversing sequence is
5,10,20,23,25,27,30,40

I Pre Order Traversal:The traversing sequence is
30,20,10,5,25,23,27,40

I Post Order Traversal:The traversing sequence is
5,10,23,27,25,20,40,30

Search a node from BST
Search a node from a Tree means the desired node exist or not in a
BST. Two way to search a node : recursive way and Non recursive
way.

30

20

10

05

25

23 27

40

30

20

10

05

25

23 27

40

Figure: SearchNode25and21

Algorithm for Searching

Algorithm 1 Recursive Search algorithm

INPUT: Binary search Tree (T) and current node i.e present node
PN under scanning . Searched item/key is K
OUTPUT: KEY ELEMENT FOUND if the function return 1 i.e K
in T other wise KEY ELEMENT NOT FOUND the function return
0.

Recursive Searching(TNode ∗ PN,K)
if PN == NULL then

Return 0
else if K == PN → Data then

Return 1
else if K ≤ PN → Data then

Return Recursive Searching(PN → Lchild ,K)
else

Return Recursive Searching(PN → Rchild ,K)
end if

Insert a node in a BST

Insert 30−→
30

Insert 20−→

30

20 Insert 40−→

30

20 40 Insert 25−→

30

20

25

40

Insert 10−→

30

20

10 25

40

Figure: Insert nodes into a Binary Search Tree.

Delete a node from a BST
During delete a node there are three possibility :
i) Deleted node does not have any child
ii) Deleted node have only one child
iii)Deleted node have two child

I No child:

30

20

10

05

25

23 27

40

Delete 05−→

30

20

10 25

23 27

40

Figure: Detete 5 from Binary Search Tree.

Delete One child

30

20

10

05

25

23 27

40

Delete 10−→

30

20

05 25

23 27

40

Figure: Detete 10 from Binary Search Tree.

Delete Two child

30

20

10

05

25

23 27

40

Delete 20−→

30

23

10

05

25

27

40

Figure: Detete 20 from Binary Search Tree.

Complexity of BST

Table: Complexity of BST operations

Operations Best Case Average
Case

Worst Case

Traversal O(N) O(N) O(N)

Searching O(1) O(log N) O(N)

Insert O(1) O(log N) O(N)

Delete O(1) O(log N) O(N)

Applications of BST

(i) BST Used in many searching application where data is
constantly entering or leaving such as map and set object in many
language library
(ii) Storing a set of Names and being able to look up based on a
prefix of the name.
(iii) BST is Used to express arithmetic expressions
(iv) To implement Huffman Coding Algorithm Binary search tree is
used

Thank You

Topic: Finite Automata [FA]
DFA Minimization(Revisited)

Lecture – IX
Prof. Mithun Roy

Formal Language & Automata Theory
PCC-CS 403

5/11/2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT, Siliguri 1

DFANFANFA-Ɛ
MIN
DFA

L-IX

5/11/2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT, Siliguri 2

Minimization of DFA

Minimization of DFA means reducing the number of states from given FA. Thus, we get the FSM(finite state
machine) with redundant states after minimizing the FSM.

We have to follow the various steps to minimize the DFA. These are as follows:

Step 1: Remove all the states that are unreachable from the initial state via any set of the transition of DFA.

Step 2: Draw the transition table for all pair of states.

Step 3: Now split the transition table into two tables T1 and T2. T1 contains all final states, and T2 contains
non-final states.

Step 4: Find similar rows from T1 such that: 1. δ (q, a) = p 2. δ (r, a) = p
That means, find the two states which have the same value of a and b and remove one of them.

Step 5: Repeat step 3 until we find no similar rows available in the transition table T1.

Step 6: Repeat step 3 and step 4 for table T2 also.

Step 7: Now combine the reduced T1 and T2 tables. The combined transition table is the transition table of
minimized DFA.

5/11/2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT, Siliguri 3

Step 1: In the given DFA, q2 and q4 are the unreachable
states so remove them.

Step 2: Draw the transition table for the rest of the states.

Q | Σ 0 1

→ q0 q1 q3

q1 q0 q3

*q3 q5 q5

*q5 q5 q5

Step 3: Now divide rows of transition table into two sets as:
1. One set contains those rows, which start from non-
final states:

Q | Σ 0 1

→ q0 q1 q3

q1 q0 q3

2. Another set contains those rows, which starts from final states.

Q | Σ 0 1

*q3 q5 q5

*q5 q5 q5

Step 4: Set 1 has no similar rows so set 1 will be the same.
Step 5: In set 2, row 1 and row 2 are similar since q3 and q5
transit to the same state on 0 and 1. So skip q5 and then replace
q5 by q3 in the rest.

Q | Σ 0 1

*q3 q3 q3

Step 6: Now combine set 1 and set 2 as:

Q | Σ 0 1

→ q0 q1 q3

q1 q0 q3

*q3 q3 q3

q2

q0

q1 q3

0
0

1

0,1

1

So, The Minimized DFA.

Example - I

5/11/2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT, Siliguri 4

Step 1: In the given DFA, all the state are reachable states.

Step 2: Draw the transition table for the rest of the states.

Q | Σ 0 1

→ a b c

b a d

*c e f

*d e f

*e e f

f f f

Step 3: Now divide rows of transition table into two sets as:
1. One set contains those rows, which start from non-
final states:

2. Another set contains those rows, which starts from final states.

Step 4: Set 1 has no similar rows so set 1 will be the same.
Step 5: In set 2, row 1,2 and row 3 are similar since c, d and e
transit to the same state on 0 and 1. So skip e & d and then replace
e by c in the rest.

Q | Σ 0 1

*c c f

Step 6: Now combine set 1 and set 2 as:

q2

a

f c

0
0

1

0,1
1

So, The
Minimized
DFA is

Q | Σ 0 1

→ a b c

b a d , c

f f f

Q | Σ 0 1

*c e f

*d e f

*e e f

Q | Σ 0 1

→ a b c

b a c

f f f

*c c f

b

0

Example - II

5/11/2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT, Siliguri 5

Homework – VIII

Minimized the given DFA

Design & Analysis of Algorithm

PCC-CS 404

Topic: Dynamic Programming

[Matrix Chain Multiplication]

Lecture – VII

Prof. Mithun Roy

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 1

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 2

Method

𝐓 𝐧 = 𝐓 𝐧 − 𝟏 + 𝐓 𝐧 − 𝟐 , 𝐓 𝟎 = 𝟏, 𝐓 𝟏 = 𝟏
𝑻 𝟐 = 𝑻 𝟏 + 𝑻 𝟎 = 𝟐 , 𝑻 𝟑 = 𝑻 𝟐 + 𝑻 𝟏 = 𝟑,… .

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 3

Merge Sort Method

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 4

Method

𝐵2×2 × 𝐶2×3 = 𝐵𝑝×𝑞 × 𝐶𝑞×𝑟 = 𝑅𝑝×𝑟 (𝑝 × 𝑞 × 𝑟)

𝐴1, 𝐴2, 𝐴3
𝐴10×20, 𝐴20×30, 𝐴30×40

(𝑨𝟏× 𝑨𝟐) × 𝑨𝟑 = 6000 + 𝑅10×30 × 𝐴3 = 6000 + 12000 = 18000
𝐴1 × 𝐴2 × 𝐴3 = 𝐴1 × 𝑅20×40 + 24000 = 8000 + 24000 = 32000

(𝐴1× 𝐴2) × 𝐴3

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 5

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x
12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

M(𝑖, 𝑗) = ቐ
0 , 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

𝑀 𝑖, 𝑘 + 𝑀 𝑘 + 1, 𝑗 + 𝑝𝑖−1𝑝𝑘𝑝𝑗 , 𝑖 < 𝑗

𝐴14×10, 𝐴210×3, 𝐴33×12, 𝐴412×20, 𝐴520×7

p0 = 4 , p1 = 10 , p2 = 3 , p3 = 12, p4 = 20 and p5 = 7

1 2 3 4 5

0
120/

1
1

0
360/

2
2

0
720/

3
3

0
1680

/4
4

0 5

j

i

M 1,2 = M 1,1 + M 2,2 + p0p1p2 = 120
M 2,3 = M 2,2 + M 3,3 + p1p2p3 = 360
M 3,4 = M 3,3 + M 4,4 + p2p3p4 = 720
M 4,5 = M 4,4 + M 5,5 + p3p4p5 = 1680

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 6

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x
12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

M(𝑖, 𝑗) = ቐ
0 , 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

𝑀 𝑖, 𝑘 + 𝑀 𝑘 + 1, 𝑗 + 𝑝𝑖−1𝑝𝑘𝑝𝑗 , 𝑖 < 𝑗

𝐴14×10, 𝐴210×3, 𝐴33×12, 𝐴412×20, 𝐴520×7

p0 = 4 , p1 = 10 , p2 = 3 , p3 = 12, p4 = 20 and p5 = 7

𝑀 1,3 = 𝑚𝑖𝑛 ቊ
𝑀 1,1 +𝑀 2,3 + 𝑝0𝑝1𝑝3 = 360 + 480 > 264

𝑀 1,2 +𝑀 3,3 + 𝑝0𝑝2𝑝3 = 120 + 144 = 264

1 2 3 4 5

0
120/

1
264/

2
1

0
360/

2
2

0
720/

3
3

0
1680

/4
4

0 5

j

i

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 7

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x
12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

M(𝑖, 𝑗) = ቐ
0 , 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

𝑀 𝑖, 𝑘 + 𝑀 𝑘 + 1, 𝑗 + 𝑝𝑖−1𝑝𝑘𝑝𝑗 , 𝑖 < 𝑗

𝐴14×10, 𝐴210×3, 𝐴33×12, 𝐴412×20, 𝐴520×7

p0 = 4 , p1 = 10 , p2 = 3 , p3 = 12, p4 = 20 and p5 = 7

M 2,4 = min ቊ
M 2,2 + M 3,4 + p1p2p4 = 720 + 600 = 1320

M 2,3 + M 4,4 + p1p3p4 = 360 + 2400 > 1320

1 2 3 4 5

0
120/

1
264/

2
1

0
360/

2
1320

/2
2

0
720/

3
3

0
1680

/4
4

0 5

j

i

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 8

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x
12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

M(𝑖, 𝑗) = ቐ
0 , 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

𝑀 𝑖, 𝑘 + 𝑀 𝑘 + 1, 𝑗 + 𝑝𝑖−1𝑝𝑘𝑝𝑗 , 𝑖 < 𝑗

𝐴14×10, 𝐴210×3, 𝐴33×12, 𝐴412×20, 𝐴520×7

p0 = 4 , p1 = 10 , p2 = 3 , p3 = 12, p4 = 20 and p5 = 7

M 3,5 = min ቊ
M 3,3 + M 4,5 + p2p3p5 = 1680 + 252 > 1140

M 3,4 + M 5,5 + p2p4p5 = 720 + 420 = 1140

1 2 3 4 5

0
120/

1
264/

2
1

0
360/

2
1320

/2
2

0
720/

3
1140

/4
3

0
1680

/4
4

0 5

j

i

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 9

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x
12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

M(𝑖, 𝑗) = ቐ
0 , 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

𝑀 𝑖, 𝑘 + 𝑀 𝑘 + 1, 𝑗 + 𝑝𝑖−1𝑝𝑘𝑝𝑗 , 𝑖 < 𝑗

𝐴14×10, 𝐴210×3, 𝐴33×12, 𝐴412×20, 𝐴520×7

p0 = 4 , p1 = 10 , p2 = 3 , p3 = 12, p4 = 20 and p5 = 7

M 1,4 = 𝑚𝑖𝑛 ൞

𝑀 1,1 + 𝑀 2,4 + 𝑝0𝑝1𝑝4 = 1320 + 800 > 1080

𝑀 1,2 + 𝑀 3,4 + 𝑝0𝑝2𝑝4 = 120 + 720 + 240 = 1080

𝑀 1,3 + 𝑀 4,4 + 𝑝0𝑝3𝑝4 = 264 + 960 > 1080

1 2 3 4 5

0
120/

1
264/

2
1080

/2
1

0
360/

2
1320

/2
2

0
720/

3
1140

/4
3

0
1680

/4
4

0 5

j

i

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 10

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x
12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

M(𝑖, 𝑗) = ቐ
0 , 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

𝑀 𝑖, 𝑘 + 𝑀 𝑘 + 1, 𝑗 + 𝑝𝑖−1𝑝𝑘𝑝𝑗 , 𝑖 < 𝑗

𝐴14×10, 𝐴210×3, 𝐴33×12, 𝐴412×20, 𝐴520×7

p0 = 4 , p1 = 10 , p2 = 3 , p3 = 12, p4 = 20 and p5 = 7

𝑀 2,5 = 𝑚𝑖𝑛 ൞

𝑀 2,2 + 𝑀 3,5 + 𝑝1𝑝2𝑝5 = 1140 + 210 = 1350

𝑀 2,3 + 𝑀 4,5 + 𝑝1𝑝3𝑝5 = 360 + 1680 + 840 > 1350

𝑀 2,4 + 𝑀 5,5 + 𝑝1𝑝4𝑝5 = 1320 + 1400 > 1350

1 2 3 4 5

0
120/

1
264/

2
1080

/2
1

0
360/

2
1320

/2
1350

/2
2

0
720/

3
1140

/4
3

0
1680

/4
4

0 5

j

i

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT

1 2 3 4 5

0
120/

1
264/

2
1080

/2
1344

/2
1

0
360/

2
1320

/2
1350

/2
2

0
720/

3
1140

/4
3

0
1680

/4
4

0 5

11

Example of Matrix Chain Multiplication

Example: We are given the sequence {4, 10, 3, 12, 20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x
12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

j

i

M(𝑖, 𝑗) = ቐ
0 , 𝑖 = 𝑗

min
𝑖≤𝑘<𝑗

𝑀 𝑖, 𝑘 + 𝑀 𝑘 + 1, 𝑗 + 𝑝𝑖−1𝑝𝑘𝑝𝑗 , 𝑖 < 𝑗

𝐴14×10, 𝐴210×3, 𝐴33×12, 𝐴412×20, 𝐴520×7

p0 = 4 , p1 = 10 , p2 = 3 , p3 = 12, p4 = 20 and p5 = 7

𝑀 1,5 = 𝑚𝑖𝑛

𝑀 1,1 + 𝑀 2,5 + 𝑝0𝑝1𝑝5 = 1350 + 280 > 1344

𝑀 1,2 + 𝑀 3,5 + 𝑝0𝑝2𝑝5 = 120 + 1140 + 84 = 1344

𝑀 1,3 + 𝑀 4,5 + 𝑝0𝑝3𝑝5 = 264 + 1680 + 336 > 1344

𝑀 1,4 + 𝑀 5,5 + 𝑝0𝑝4𝑝5 = 1080 + 560 > 1344

12-06-2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT 12

PRINT-OPTIMAL-PARENS(S,i,j)
if i = j then

print Ai;
else

print ”(”;
PRINT-OPTIMAL-PARENS(S,i,S(i,j));
PRINT-OPTIMAL-PARENS(S,S(i,j)+1,j);
print ”)”;

end

((A1A2)((A3A4)A5))

1 2 3 4 5

0 1 2 2 2 1

0 2 2 2 2

0 3 4 3

0 4 4

0 5

j

i

S,1,5

S,1,2

S,1,1 S,2,2

S,3,5

S,3,4

S,3,3 S,4,4

S,5,5

S Table

Algorithm

In this way if you multiply then optimal
number of scalar multiplication is required.

IT-5th Semester
Operating System (PCC-CS502)

Lecture-13

Resource Allocation Graphs:

Deadlocks can be described more precisely in terms of a directed graph called a system resource
allocation graph. This graph consists of a set of vertices V and a set of edges E. The set of vertices is
portioned into two different types of nodes P={P0, P1… Pn}, the set of the active processes in the system,
and R={R0, R1… Rn}, the set consisting of all resource types in the system. A directed edge from a process
Pi to resource type Rj signifies that process Pi requested an instance of Rj and is waiting for that resource.
A directed edge from Rj to Pi signifies that an instance of Rj has been allocated to Pi.

• Process

• Resource Type with 2 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

 R1 R3

 R2 R4

 P1
 P3 P2

The resource allocation graph shown above depicts the following situation:
 P= {P1, P2, P3 }
 R= {R1, R2, R3}
 E= {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, P3 → R3}

Resource Instances
 One instance of resource type R1
 Two instances of resource type R2
 One instance of resource type R3
 Three instances of resource type R4

Process States
 Process P1 is holding an instance of resource R2, and is waiting for an instance of resource R1.
 Process P2 is holding an instance of resource R1 and R2, and is waiting for an instance of resource R3.
 Process P3 is holding an instance of resource R3.

Given the definition of a resource allocation graph, it can be shown that if the graph contains no cycles,
then no process is deadlocked.

If the graph contains cycles then:

 If only one instance per resource type, then a deadlock exists.
 If several instances per resource type, possibility of deadlock exists.

Here is a resource allocation graph with a deadlock. There are two cycles in this graph:
{P1 → R1, R1 → P2, P2 → R3, R3 → P3, P3 → R2, R2 → P1} and
{P2 → R3, R3 → P3, P3 → R2, R2 → P2}
No process will release an already acquired resource and the three processes will remain in the deadlock
state.

The graph shown above has a cycle but there is no deadlock because processes P2 and P4 do not require
further resources to complete their execution and will release the resources they are currently hold in
finite time. These resources can then be allocated to P1 and P3 for them to resume their execution.

RESEARCH METHODOLOGY
NATURE & MEANING OF RESEARCH

In the modern complex world every society today is faced with serious social, economic &

political problems. These problems need systematic, intelligent and Practical solutions.

Problem solving is technical process. It requires the accumulation of new knowledge. Research

provides the means for accumulating knowledge & wisdom. In other words, research is a

systematic effort of gathering analysis & interpretation of problems confronted by humanity. It

is a thinking process and scientific method of studying a problem and finding solution. It is an

in-depth analysis based on reflective thinking.

DEFINITIONS

Research in common parlance refers to a search for knowledge. One can also define research as

a scientific and systematic search for pertinent information on a specific topic. Research is an

academic activity and the term should be used in a technical sense.

a) -William Emory defines Research as "any organised enquiry designed and carried out to

provide information for solving a problem"

b) The new Oxford English Dictionary defines research is "the scientific investigation into and

study of material, sources etc in order to establish facts and the reach new conclusions".

c) Redman and Mory defines, research as "a systematised effort to gain new knowledge''.

d) "A careful investigation or inquiry specially through search for new facts in any branch of

knowledge" Advanced Leaner's Dictionary.

CHARACTERISTICS OF RESEARCH

The above definitions reveal the following characteristics of Research

1. Research is a systematic and critical investigation into a phenomenon.

2. It is not mere compilation of facts.

3. It adopts scientific method.

4. It is objective & Logical

5. It is based on empirical evidence.

6. Research is directed towards finding answers to questions

7. It emphasis the generalisation of theories and principles.

OBJECTIVES OF RESEARCH

The objectives of Research can be grouped under the following heads

1. To gain familiarity with a phenomenon or to achieve new insights to it.

2. To portray accurately the characteristics of a particular individual situation or a group.

3. To determine the frequency with which something occurs or with which it is associated

with something else.

4. To test a hypothesis or a casual relationship between variables.

MOTIVATIONS IN RESEARCH

What makes people to undertake research?

The answer is as follows.

1. Desire to get a research degree along with its benefits.

2. Desire to face the challenge in the solving the unsolved Problem.

3. Desire to get intellectual joy of doing some creative work.

4. Desire to be of service to Society.

5. Desire to get respectability

IMPORTANCE OF RESEARCH

"All progress is born of enquiry. Doubt is often better than overconfidence, for it leads to

enquiry & enquiry leads to investigation". Research has an important role in guiding social

plan. Knowledge of the society & the cultural behaviour of the people require proper planning

for their well development. Because knowledge & cultural behaviour of human being are

interdependent. A reliable knowledge is needed for planning & this is possible only through

research. Knowledge is a kind of power with which one can face the implication of a particular

Phenomenon. Research provides the basis for all govt policies in our economic system.

Research help us in making predictions. Eg. Chernobil Nuclear, nuclear plant disastrour,

Bhopal gas disastrour. Research is equally important in seeking answer to various social

problems In addition to this, the significance of research can be understood with the following

points.

1

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

ADDRESSING

Overview of IPv4 Addressing Scheme

i) The identifier used in the network layer in the Internet model to identify each device connected

to the Internet is called the Internet address or IP Address.

ii) IP address is 32 bits (IPv4) or 128 bits (IPv6).

iii) It is represented by dotted decimal notation.

iv) IP Address is unique.

They are unique in the sense that each address defines one and only one connection to the

Internet. Two devices in the Internet can never have the same address at the same time.

v) The IP Addresses are universal in the sense that the addressing system must be accepted by

any host that wants to be connected to the Internet.

Notations

We use notations to show an IPv4 address: binary notation and dotted-decimal notation.

Binary Notation

 In binary notation, the IPv4 address is displayed as 32 bits. Each octet is often referred to as a

byte. So it is common to hear an IPv4 address referred to as a 32-bit address or a 4-byte

address.

 The following is an example of an IPv4 address in binary notation:

01110101 10010101 00011101 00000010

Dotted-Decimal Notation

 To make the IPv4 address more compact and easier to read, Internet addresses are usually

written in decimal form with a decimal point (dot) separating the bytes. The following is the

dotted-decimal notation of the above address: 117.149.29.2

10000000 . 00001011 . 00000011 . 00011111

 128 . 11 . 3 . 31

Has a LAN Card
Address

Logical Address/

IP Address

Physical Address/

 MAC Address

2

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

Question1.

Change the following IPv4 addresses from binary notation to dotted-decimal notation.

a. 10000001 00001011 00001011 11101111

b. 11000001 10000011 00011011 11111111

Solution

We replace each group of 8 bits with its equivalent decimal number (see Appendix B) and add

dots for separation.

a. 129.11.11.239

b. 193.131.27.255

Question2.

Change the following IPv4 addresses from dotted-decimal notation to binary notation.

a. 111.56.45.78

b. 221.34.7.82

Solution

We replace each decimal number with its binary equivalent (see Appendix B).

a..01101111 00111000 00101101 01001110

b. 11011101 00100010 00000111 01010010

Question3.

Find the error, if any, in the following IPv4 addresses.

a. 111.56.045.78

b. 221.34.7.8.20

c. 75.45.301.14

d. 11100010.23.14.67

Solution

a. There must be no leading zero (045).

b. There can be no more than four numbers in an IPv4 address.

c. Each number needs to be less than or equal to 255 (301 is outside this range).

d. A mixture of binary notation and dotted-decimal notation is not allowed.

3

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

Classful Addressing

 IPv4 addressing when started a few decades ago, used the concept of classes. This architecture

is called classful addressing.

 In classful addressing, the address space is divided into five classes: A, B, C, D, and E. Each

class occupies some part of the address space.

 In mid 1990s, a new architecture, called classless addressing was introduced, which will

eventually supersede the original architecture.

Finding the classes in binary and dotted decimal notation.

Question4.
Find the class of each address.

a. 00000001 00001011 00001011 11101111

b. 11000001 10000011 00011011 11111111

c. 14.23.120.8

d. 252.5.15.111

Solution

a. The first bit is 0. This is a class A address.

b. The first 2 bits are 1; the third bit is 0. This is a class C address.

c. The first byte is 14 (between 0 and 127); the class is A.

d. The first byte is 252 (between 240 and 255); the class is E.

1
st

Bit 2
nd

 Bit

3
rd

 Bit 4
th

 Bit

Start

1

0

1 1

0 0 0

1

Class A Class B Class C Class D Class E

4

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

There are two parts of an IP address:

 Network ID

 Host ID

The various classes of networks specify additional or fewer octets to designate the network ID versus the host ID.

Class 1st Octet 2nd Octet 3rd Octet 4th Octet

 Net ID Host ID

A

 Net ID Host ID

B

 Net ID Host ID

C

D Multicast Address

E Reserve for Future use

Question5. Find the Network ID and Broadcast ID of different classes?

Answer.

For Class A Network

Network Id  X.0.0.0

Broadcast Id  X.255.255.255

For Class B Network

Network Id  X.X.0.0

Broadcast Id  X.X.255.255

For Class C Network

Network Id  X.X.X.0

Broadcast Id  X.X.X.255

Note : where X is variable ; X belongs to 0 to 127 for class A

5

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

Note:

1
st
 address  0.0.0.0

Last Address  127.255.255.255

So, Maximum number of network  128

Valid number of n/w  126

Because, we can not assign first and last address in any host machine.

First address is used for identifying a n/w (known as network address)

And last address is used for broadcasting purpose.

Network Address :

i) The network address is an address that defines the network itself.

ii) It can not be assign to a host

iii) Network address plays a very important role in classful addressing. A network address has several

properties –

a) All host bits are 0’s

b) Router can route a packet based on network address.

iv) In classful addressing, the network address is one that is assigned to the organization.

v) For network address 

Note : Network Address = Binary AND operation of (IP Address + Subnet Mask)

Eg. 192.168.10.0 = 192.168.10.45 + 255.255.255.0

 11000000.10101000.00001010.00101101 192.168.10.45

 11111111.11111111.11111111.00000000 255.255.255.0

 11000000.10101000.00001010.00000000 192.168.10.0

Specific All 0’s

Class A

Class B Class C Class D

1
st
 address  128.0.0.0

Last Address  191.255.255.255

Maximum no. of n/w2
16

Maximum no. of Host2
16

1
st
 address  192.0.0.0

Last Address  223.255.255.255

Maximum no. of n/w2
24

Maximum no. of Host2
8

1
st
 address  224.0.0.0

Last Address  239.255.255.255

1
st
 address  240.0.0.0

Last Address  255.255.255.255

Class E

Net id Host id

6

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

Question 6.

Find out the network address of 132.6.17.85?

Answer:

132.6.17.85 is a class B IP address. The first 2 bytes defines the netid. We can find the n/w address by replacing

the hosted bytes (17.85) with 0’s. Therefore, the network address is 132.6.0.0.

 When a router receives a packet with a destination address, it needs to route the packet. The routing is based on

the network address and sub-network address.

 the router outside the organization route the packet based on the network address; and the router inside the

organization routes the packet based on sub-network address.

Eg. When a parcel reaches in a post office, they are routed according to zip code. When they reach the post office

serving that zip code, the parcel are routed according to the street address.

 Now the question is how can a router find the network address or subnetwork address?

A network administrator knows the network and sub-network address, but a router does not. A 32 bit number,

called mask is the key to solve this problem.

 the router outside the organization use a default mask,; the router inside the organization use a subnet mask.

When a router receives a 32 bit binary IP and mask values, it performs a binary AND operation on it, and the

result will be the desire network address.

Eg. 

 192.168.10.2/24

 Router

 192.168.10.0  network address

Default Mask:
Although the length of the netid and hostid (in bits) is predetermined in classful addressing, we can also use a

mask (also called the default mask), a 32-bit number made of contiguous 1s followed by contiguous 0s. The

masks for classes A, B, and C are shown in Table. The concept does not apply to classes D and E.

The mask can help us to find the netid and the hostid. For example, the mask for a class A address has eight 1s,

which means the first 8 bits of any address in class A define the netid; the next 24 bits define the hostid. The last

column of Table shows the mask in the form /n where n can be 8, 16, or 24 in classful addressing. This notation is

MASK

11000000.10101000.00001010.00101101

11111111.11111111.11111111.00000000

11000000.10101000.00001010.00000000

7

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

also called slash notation or Classless Interdomain Routing (CIDR) notation. The notation is used in classless

addressing, which we will discuss later. We introduce it here because it can also be applied to classful addressing.

Subnet Mask:
The number of 1’s in a subnetmask is more than the number of 1s in the corresponding default mask.

Eg.  for class B, default mask is /16

Default mask of class B  255.255.0.0

  11111111.11111111.00000000.00000000

Subnet mask  255.255.224.0

  11111111.11111111.11100000.00000000

 The number of subnets is determined by the number of extra 1’s.

 If the number of extra 1 is n. then the number of subnet is 2
n

 If the number of subnet is N, then the number of extra 1’s is log2N.

Subnetting:
 In subnetting, a network is divided into several smaller groups with each subnetwork (or subnet)

having its own subnetwork address.

 Often an organization needs to assemble the host into groups; the network needs to be divided into

several subnetworks.

 E.g.  A university may want to group its host according to departments. In this case the university

has one n/w address, but needs several subnetwork addresses. The outside world knows the

organization by its n/w address. Inside the organization of each subnetwork is recognized by its

subnetwork address.

141.14.192.4 141.14.128.0

141.14.14.254 -----------

--

 R1

 R2 R3

Rest of the Internet

University  141.14.0.0 (Network address)

141.14.192.1
 141.14.192.4

141.14.192.254 141.14.128.1 141.14.128.254

141.14.0.12

141.14.64.9

141.14.0.1

141.14.14.2 -----------

--

141.14.64.1 141.14.64.2 141.14.64.254

 Subnet

141.14.64.0

Subnet

141.14.0.0

-

-

-- ---

-

Subnet

141.14.192.0

Subnet

141.14.128.0

CSE Dept 

IT Dept 

EE Dept

ECE Dept

8

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

Supernetting

The time came when most of the class A and class B addresses were depleted; however, there was still a huge

demand for midsize blocks. The size of a class C block with a maximum number of 256 addresses did not satisfy

the needs of most organizations. Even a midsize organization needed more addresses. One solution was

supernetting. In supernetting, an organization can combine several class C blocks to create a larger range of

addresses. In other words, several networks are combined to create a super- network or a supernet. An

organization can apply for a set of class C blocks instead of just one. For example, an organization that needs

1000 addresses can be granted four contiguous class C blocks. The organization can then use these addresses to

create one supernetwork. Supernetting decreases the number of 1 s in the mask. For example, if an organization is

given four class C addresses, the mask changes from/24 to/22. We will see that classless addressing eliminated

the need for supernetting.

Question7: What is the difference between IP address and MAC address?
Answer.

IP Address MAC Address

1. It is logical address.

2. IP address is dynamic.

3. IPv4 is 32 bits, and IPv6 is 128 bits.

4. IP address is represented by dotted decimal

notation.

5. It is user define address.

6. It is classify into 5 classes.

 i.e. class A, class B, class C, class D, class E

7. Each IP address has two parts. Netid and hosted.

1. It is physical address.

2. MAC address is Static.

3. MAC address is 48 bits.

4. MAC address is represented by dotted

hexadecimal notation.

5. It is manufacturing address.

6. No such type of classification.

7. No such type of division present in MAC address.

Note:

Formula to determine number of hosts on a given network

• Given that there are N host bits in an address, the number of hosts for that network is 2N - 2. Two addresses are

subtracted for the network address and the broadcast address.

• 8 host bits: 28 - 2 = 254 hosts

• 16 host bits: 216 - 2 = 65534 hosts

• 24 host bits: 224 - 2 = 16777214 hosts

9

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

 Public IP and Private IP addresses

Public IP Address:

• Most IP addresses are public addresses. Public addresses are registered as belonging to a specific organization.

• Internet Service Providers (ISP) and extremely large organizations obtain blocks of public addresses from the

IANA (Internet Assigned Numbers Authority). Other organizations obtain public addresses from their ISPs.

• Public IP addresses are routed across the Internet, so that hosts with public addresses may freely communicate

with one another globally.

• No organization is permitted use public addresses that are not registered with that organization!

Private IP Address:

• The following are private addresses.

– Class A range: 10.0.0.0 through 10.255.255.255.

– Class B range: 172.16.0.0 through 172.31.255.255.

– Class C range: 192.168.0.0 through 192.168.255.255.

• Private addresses may be used by any organization, without any requirement for registration.

• Because private addresses are ambiguous - can’t tell where they’re coming from or going to because anyone can

use them - private addresses are not permitted to be routed across the Internet.

• ISPs block private addresses from being routed across their infrastructure.

• Note: The use of private addresses, network address translation (NAT), and proxy servers solved the IP address

shortage problem for the short and medium terms.

Reserved addresses

 0.0.0.0 is the default IP address, and it is used to specify a default route.

The default route will be discussed later (routing section).

 Addresses beginning with 127 are reserved for internal loopback addresses.

It is common to see 127.0.0.1 used as the internal loopback address on many devices.

Try pinging this address on a PC or Unix station.

http://www.iana.org/

10

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

IP Datagram

What is Datagram?

• Packets in the network layer are called Datagram.

• A datagram is a variable length packet consisting of two parts-----

I) Header

II) Data

*** the header is 20 – 60 bytes in length and contains information essential to routing and delivery.

IP datagram frame format

• VER (version) : - This 4bits field defines, which version of IP address we used (IPv4 or IPv6)

• HLEN (Header Length):- This field defines the header length, which is variable (20 – 60 bytes)

• DS (Differentiate Services):- This field defines the different service type.

In this interpretation, the first 3 bits are called precedence bits. The next 4 bits are called type of service

(TOS) bits, and the last bit is not used.

a. Precedence is a 3-bit subfield ranging from 0 (000 in binary) to 7 (111 in binary). The precedence

defines the priority of the datagram in issues such as congestion. If a router is congested and needs

to discard some datagram’s, those datagram’s with lowest precedence are discarded first. Some

datagram’s in the Internet are more important than others. For example, a datagram used for

11

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

network management is much more urgent and important than a datagram containing optional

information for a group.

b. TOS bits is a 4-bit subfield with each bit having a special meaning. Although a bit can be either 0

or 1, one and only one of the bits can have the value of 1 in each datagram. The bit patterns and

their interpretations are given in diagram bellow. With only 1 bit set at a time, we can have five

different types of services.

• Total Length :- This field defines the total length (header + Data) of the IP Datagram in bytes.

 Length of the IP datagram is limited to 65535 (2
16

-1) bytes.

• Identification:- This field is required to set an identification number to each Datagram.

• Flags:- This is a 3-bit field. The first bit is reserved. The second bit is called the do not fragment bit. If its

value is 1, the machine must not fragment the datagram. If its value is 0, the datagram can be fragmented

if necessary. The third bit is called the more fragment bit. If its value is 1, it means the datagram is not the

last fragment; there are more fragments after this one. If its value is 0, it means this is the last or only

fragment.

• Fragmentation offset: This 13-bit field shows the relative position of this fragment with respect to the

whole datagram. It is the offset of the data in the original datagram measured in units of 8 bytes. Figure

(bellow) shows a datagram with a data size of 4000 bytes fragmented into three fragments.

The bytes in the original datagram are numbered 0 to 3999. The first fragment carries bytes 0 to 1399. The

offset for this datagram is 0/8 = 0. The second fragment carries bytes 1400 to 2799; the offset value for

this fragment is 1400/8 = 175. Finally, the third fragment carries bytes 2800 to 3999. The offset value for

this fragment is 2800/8 = 350.

12

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

• Time to live:- Time to live is a limit on the period of time or number of iterations or transmission in

computer and n/w technology that a unit of data (Eg. Packet) can experience before it should discarded.

Or this field is used to control the maximum number of hops (routers) visited by the datagram.

• Protocol:- This field defines the higher-level protocol that uses the service of the IP layer. An IP datagram

can encapsulate data from several higher level protocols. Such as TCP, UDP, ICMP. This field defines the

final destination protocol to which the IP datagram should be delivered.

• The IP multiplexed and demultiplexed data from different higher level protocols.

Value protocol

1 ICMP

2 IGMP

6 TCP

17 UDP

89 OSPF

13

Complied by: Anupam Mukherjee contact: anupamsit@gmail.com

• Checksum:- Checksum field is used for error detection purpose in IP datagram. The header of IP packets

changes with each visited router, but data do not. So, the checksum include only the part that has changed.

• Source Address:- This field defines the source IP address, and this field remain unchanged during the

time the IP datagram travels from source host to destination host.

• Destination address:- This field defines the IP address of the destination

• Options:- As name implies, are not required for every datagram. They are used for network testing and

debugging.

Prepared by M.R.Chakraborty

Not for distribution without permission

Introduction

Basics of electricity

M.R.Chakraborty
Department of EE

Siliguri Institute of Technology

Prepared by M.R.Chakraborty

Not for distribution without permission

2

Outline

 Ohm’s law 2

Basic quantities 4

A brief history of electricity 5

About electricity 1

3

Numerical 6

 Resistance in Circuits

Prepared by M.R.Chakraborty

Not for distribution without permission

3

Electrical energy is a secondary energy source

and also referred to as an energy carrier.

Electrical energy has the following advantages over all other forms (chemical, heat, light

& mechanical) of energy

1. Cheapness

2. Convenient & efficient transmission

3. Easy control

4. Cleanliness

5. Greater flexibility – as it can be taken to any corner of the house, factory etc.

6. Utilization in versatile form

1 About electricity

Prepared by M.R.Chakraborty

Not for distribution without permission

4

By definition electric current is the rate of flow of charge through a

medium subjected to an external influence. Mathematically

Q
I

t


Where,

I = Average current flow through the medium

Q = Charge

t= time

Definition of Ampere: When a charge of one coulomb passes through a medium in one second, the medium is said to

be carrying a current of one Ampere

1 About electricity

Prepared by M.R.Chakraborty

Not for distribution without permission

5

Electric current is divided into two types:

• Directional Current (DC)

• Alternating Current (AC)

Directional (Direct) Current

A non-varying, unidirectional electric current (Example: Current produced by batteries)

Characteristics:

 Direction of the flow of positive and negative charges does not change with time

 Direction of current (direction of flow for positive charges) is constant with time

 Potential difference (voltage) between two points of the circuit does not change polarity with time

1 About electricity

Prepared by M.R.Chakraborty

Not for distribution without permission

6

Alternating Current

A current which reverses in regularly recurring intervals of time and which has alternately positive and

negative values, and occurring a specified number of times per second.

(Example: Household electricity produced by generators, Electricity supplied by utilities.)

Characteristics:

 Direction of the current reverses periodically with time

 Voltage (tension) between two points of the circuit changes polarity with time.

 In 50 cycles AC, current reverses direction 100 times a second (two times during one cycle)

1 About electricity

Prepared by M.R.Chakraborty

Not for distribution without permission

7

Ohm’s law 2

The potential difference (V) between any two points of a conductor is directly proportional to the current (I)

flowing through the conductor provided temperature and all other physical quantities (e.g. length, cross –

sectional area etc.) remain unchanged.

Mathematically we can write, V I

, or V RI

Resistance is the property of a material by virtue of which it opposes the flow of electrons through it. The unit of

Resistance is “ohm” (Ω).

From Ohm's Law
V

R
I



For V = 1 Volt & I = 1 Amp

R=1 ohm

Thus 1 ohm is defined as the amount of resistance which opposes a flow of 1 amp current through a conductor

when the potential difference across the conductor is 1 Volt.

R is the constant of proportionality & termed as ′Resistance′

Prepared by M.R.Chakraborty

Not for distribution without permission

1
 R

A


8

Laws of Resistance 2.1

Resistance of a conductor is directly proportional to its length (l) in the direction of the current flow.

Resistance of a conductor is inversely proportional to its cross-sectional area (A) perpendicular to the

direction of flow of current

Thus from the above R l Combining the two we get
l

R
A



R=
l

A
Or,

Where „ρ‟ is the proportionality constant & is called resistivity or specific resistance of the conductor.

If R = 1 ohm , l = 1 meter, A = 1 sq meter, Then,  = 1 ohm-meter So unit of resistivity is ohm-meter.

Again, if l = 1 meter and A = 1 meter2 , Then R = 

So specific resistance or resistivity of a material is defined as the value of resistance between two opposite faces of a

cube of that material with a dimension of (1 m) x (1 m) x (1 m).

and

Prepared by M.R.Chakraborty

Not for distribution without permission

9

Conductance and Conductivity 2.2

Conductance is the reciprocal of Resistance.

From ohm‟s law the current through a conductor is given by

The parameter ‘G’ is called conductance of the conductor and it is reciprocal of resistance R. Conductance

is the measurement of inducement which it offers to its flow but resistance is the measurement of opposition

which it offers to the flow of current.

Unit of conductance is Siemens or mho.

Or,

Again, from the laws of resistance,

V
I

R


1
, Where I GV G

R
 

The parameter ‘’ is called conductivity.

It is reciprocal of resistivity.

Unit of conductivity is Siemens/meter.

Prepared by M.R.Chakraborty

Not for distribution without permission

10

Temperature co-efficient of Resistance 2.3

The ratio of change in resistance per OC and the resistance at the reference temperature is called temperature

co-efficient of resistance () of a material.

Let, R1 = resistance at t1
OC

 R2 = resistance at t2
OC

 1 = temp coefficient of resistance at t1
OC

 2 = temp coefficient of resistance at t2
OC

R2 = R1 (1+ t) [where, t = t2 – t1]

Generally reference or base temp is taken as 0OC.

Let, 0 = temp coefficient of resistance at base temp 0OC

 R0 = resistance of base / reference temp of 0OC

 Rt = resistance of the material at any temp t OC

Rt = R0 (1+ ot)

Similarly we can say,
0 0(1)t t   

0
t

01 t









Temp co-efficient of resistance is given by
0

0

0

tR R

R t





Also we can arrive at

Temp. co-efficient of resistance is

i. positive for metallic conductors

ii. negative for carbon, electrolytes, semiconductors, insulators

iii. negligibly small for alloys like eureka, manganese, nickel chromium, constantan etc.

Prepared by M.R.Chakraborty

Not for distribution without permission

11

Resistance in Circuits - Series connection 3.1

When the resistances are connected in series:

 Current through equivalent resistance Req is equal to the current through each of the original resistors (all have

same current).

 Voltage across the equivalent resistance Req is the sum of the voltages over the original resistors.

From figure, V = V1 + V2 + V3 + V4

Or, IReq = IR1 + IR2 + IR3 + IR4

[Where, 'R' is the equivalent resistance of the circuit]

or, Req = R1 + R2 + R3 + R4

Or,

Criterion of series circuit

i. Same amount of current should flow through all the elements of the circuit.

ii. Individual resistors have their individual voltage drops.

iii. Nature of voltage drops are additive.

iv. Summation of all voltage drops must equal to the supply voltage.

v. Resistances are additive.

𝟏

𝐆𝐞𝐪
=

𝟏

𝐆𝟏
+

𝟏

𝐆𝟐
+

𝟏

𝐆𝟑
+

𝟏

𝐆𝟒

Prepared by M.R.Chakraborty

Not for distribution without permission

12

Resistance in Circuits - Parallel connection 3.2

When the resistances are connected in parallel:

 The individual resistors have the same voltage as the single equivalent resistor.

 The current through the equivalent resistor is the sum of the currents through the individual resistors.

 Individual voltages and currents can be recovered using Ohm‟s law or current division.

From figure, I = I1 + I2

or,

[Where, ' Req ' is the equivalent resistance of the circuit]

or,

Criterion of parallel circuit

i. Same potential difference is applied across all the resistances

ii. Different resistances have their individual currents

iii. Conductances are additive.

In terms of conductance the equivalent conductance will be Geq = G1 + G2

V

Req
=

V

R1
+

V

R2

1

Req
=

1

R1
+

1

R2

Prepared by M.R.Chakraborty

Not for distribution without permission

13

Basic quantities: Potential & potential difference 4.1

The amount of work done to move a unit charged particle from a reference

point to a designated point in a static electric field is called potential.

The difference in electric potential between two points in an electric field is

called potential difference.

It is measured in volts.

Prepared by M.R.Chakraborty

Not for distribution without permission

14

Basic quantities: Work 4.2

In an electric circuit, current flows through a conductor when potential difference is applied

to it i.e. some work is done. So we can say that whenever there is transfer of charge,

some electric work is done.

Electric work is given by, W = VQ = VIt

Where, V = potential (volt)

 Q = charge (coulomb)

 I = current (amp)

 t = time (sec)

The unit of electrical work is Joule.

Prepared by M.R.Chakraborty

Not for distribution without permission

15

Basic quantities: Power 4.3

The rate at which electric work is performed is called electric power.

It is given by, P=
amount of work done
time to do the work

=
W
t

=
VIt

t
=VI

The unit of electric power is Watt.

Prepared by M.R.Chakraborty

Not for distribution without permission

16

Basic quantities: Energy 4.3

Total amount of electric work done in a certain period of time is called electric energy.

It is given by, E = power×time =P×t=VIt

The unit is watt-sec. But watt-sec unit is very small if we think of the amount of electric

energy consumed. So we use bigger unit like KWh.

1KWh = 1000 Wh = 1000 x 3600 watt-sec = 36 x 105 watt-sec.

Prepared by M.R.Chakraborty

Not for distribution without permission

17

Brief history of electricity 5

Prepared by M.R.Chakraborty

Not for distribution without permission

18

Numerical 6

1. The resistance temperature co-efficient of aluminium at 00C is 0.0045

per 0C. Find the co-efficient for a temperature of 300 C.

Prepared by M.R.Chakraborty

Not for distribution without permission

19

Numerical 6

2. A conductor has a resistance of 10 ohm at 200 C. At 500 C its resistance increases

to 14 ohm. Determine the temperature co-efficient of the conductor at 00 C.

Prepared by M.R.Chakraborty

Not for distribution without permission

20

Numerical 6

3. Determine the resistance across ‘ab’ for the circuit shown in the figure.

Solution:

This is a series-parallel combination of resistances.

The resistance across de,
1 1

0.5
1 1

deR


  


The resistance Rde is in series with Rcd.

So, the resistance, 1 0.5 1.5cd deR R    

Now, the total resistance across ce,
1.5 1 1.5

0.6
1.5 1 2.5

ceR


   


But this resistance Rce is in series with Rac.

So the resistance across ab is given by,

1 0.6 1.6ab ac ceR R R     

Prepared by M.R.Chakraborty

Not for distribution without permission

21

Assignment 6

1. The current flowing in a circuit containing four resistors connected in series is I =

2 Amp. The potential drops across the first, second and third resistors are,

respectively: V1 = 8 V, V2 = 10V and V3= 6V. The equivalent resistance of the

circuit is R = 30 Ω.

Find the total voltage supplied by the battery and also current, voltage drop, and

resistance of each resistor in the circuit.

Prepared by M.R.Chakraborty

Not for distribution without permission

22

Assignment 6

2. Find the equivalent resistance of the circuit shown.

Prepared by M.R.Chakraborty

Not for distribution without permission

23

Solution of assignment 6

1. The current flowing in a circuit containing four resistors connected in series is I = 2 Amp. The potential drops across the

first, second and third resistors are, respectively: V1 = 8 V, V2 = 10V and V3= 6V. The equivalent resistance of the circuit

is R = 30 ꭥ.

Find the total voltage supplied by the battery and also current, voltage drop, and resistance of each resistor in the circuit.

Solution:

As the resistors are in series, so the current flow through each resistance is same.

Using the Ohm's Law, we can find the resistances of the first, second and third resistors.

R1 =
V1
I

=
8

2
= 4Ω

R2 =
V2
I

=
10

2
= 5Ω

R3 =
V3
I

=
6

2
= 3Ω

As it is a series circuit, so the equivalent resistance is the sum of the individual resistances.

Req = R1 + R2 + R3 + R4

or, R4 = Req − (R1 + R2 + R3

or, R4 = 30 − (4 + 5 + 3) = 18Ω

The current flowing through R4 is also 2A as it is a

series circuit.

Using Ohm's Law again, we can find the voltage

across R4 as below.

V4 = IR4 = 2 × 18 = 36V

Therefore, total voltage V = V1 + V2 + V3 + V4 = 8+10+6+36 = 60 V

Prepared by M.R.Chakraborty

Not for distribution without permission

24

Solution of assignment 6

2. Find the equivalent resistance of the circuit shown.

Solution:

Equivalent resistance Req = RAF ‖ RBE ‖ RCD

From the circuit given,

RAF = 8 Ω

RBE = (2 + 3) Ω = 5 Ω (as it is a series connection)

= 4‖ 2 + 8 = 4‖10 =
4 × 10

4 + 10
= 2.86Ω RCD

Therefore, Req = RAF ‖ RBE ‖ RCD = (8 ‖ 5 ‖ 2.86) 𝛀 = 1.48 𝛀

Prepared by M.R.Chakraborty

Not for distribution without permission

25

Sample questions

1. What do you mean by current? What is charge? Explain the relationship between

charge and current.

2. Write down the classification of current. Explain in brief.

3. Discuss the differences between a.c. and d.c.

4. Explain Ohm‟s law. Define resistance from it.

5. What do you mean by resistance? Name the factors affecting resistance.

6. What do you understand by resistivity, temperature co-efficient of resistance and

conductivity.

Prepared by M.R.Chakraborty

Not for distribution without permission

26

Time to think

Did I learn the topics

properly?

Confused how to

judge that?

Prepared by M.R.Chakraborty

Not for distribution without permission

How to Conduct a self-check on learning

27

1

2

3

4

Did I understand all the topics discussed in the class?

Did I understand the concepts clearly?

Can I apply the theoretical knowledge acquired in practical field?

Am I able to solve the numerical problems related to the topics?

Prepared by M.R.Chakraborty

Not for distribution without permission

If the answers are YES to the questions of previous slides

28

Congratulations !

You are on correct path of learning.

Don’t hesitate to

Prepared by M.R.Chakraborty

Not for distribution without permission

There is no alternate of studying books…….

Go through your book to know more about it.

Prepared by M.R.Chakraborty

Not for distribution without permission

31

Thank you

Stability of discrete-time system

Stability of discrete-time system

The impulse response for the different stability properties are illustrated in the figure

Stability of discrete-time system
Mapping between the s plane and the z plane

Stability of discrete-time system
Mapping between the s plane and the z plane

Stability of discrete-time system
Mapping between the s plane and the z plane

As the point in the s plane moves from
– to  on the j axis, we trace the unit circle in
the z plane an infinite number of times.

SUBJECT: ENERGY MANAGEMENT & AUDIT
CODE : EE 801C

Module 2 : Energy Scenario

Lecture 1

Energy Resources

Energy is one of the major inputs for the economic development of any country. In the case of the
developing countries, the energy sector assumes a critical importance in view of the ever-increasing
energy needs requiring huge investments to meet them.
Energy can be classified into several types based on the following criteria:

• Primary and Secondary energy
• Commercial and Non-commercial energy
• Renewable and Non-Renewable energy

Primary and Secondary energy

Primary energy sources are those that are either found or stored in nature. Common primary energy
sources are coal, oil, natural gas, and biomass (such as wood). Other primary energy sources available
include nuclear energy from radioactive substances, thermal energy stored in earth's interior, and
potential energy due to earth's gravity.
Primary energy sources are mostly converted in industrial utilities into secondary energy sources; for
example coal, oil or gas converted into steam and electricity. Primary energy can also be used directly.
Some energy sources have non-energy uses, for example coal or natural gas can be used as a feedstock
in fertiliser plants.

Commercial and Non commercial energy

Commercial Energy
The energy sources that are available in the market for a definite price are known as commercial energy.
By far the most important forms of commercial energy are electricity, coal and refined petroleum
products. Commercial energy forms the basis of industrial, agricultural, transport and commercial
development in the modern world. In the industrialized countries, commercialized fuels are predominant
source not only for economic production, but also for many household tasks of general population.
Examples: Electricity, lignite, coal, oil, natural gas etc.

Non-Commercial Energy
The energy sources that are not available in the commercial market for a price are classified as non-
commercial energy. Non-commercial energy sources include fuels such as firewood, cattle dung and
agricultural wastes, which are traditionally gathered, and not bought at a price used especially in rural
households. These are also called traditional fuels. Non-commercial energy is often ignored in energy
accounting. Example: Firewood, agro waste in rural areas; solar energy for water heating, electricity
generation, for drying grain, fish and fruits; animal power for transport, threshing, lifting water for
irrigation, crushing sugarcane; wind energy for lifting water and electricity generation.

Renewable and Non-Renewable Energy

Renewable energy is energy obtained from sources that are essentially inexhaustible. Examples of
renewable resources include wind power, solar power, geothermal energy, tidal power and hydroelectric
power. The most important feature of renewable energy is that it can be harnessed without the release of
harmful pollutants.
Non-renewable energy is the conventional fossil fuels such as coal, oil and gas, which are likely to
deplete with time.

Primary Energy Resources

Coal
The proven global coal reserve was estimated to be 9,84,453 million tonnes by end of 2003. The USA
had the largest share of the global reserve (25.4%) followed by Russia (15.9%), China (11.6%). India
was 4th in the list with 8.6%.

Oil
The global proven oil reserve was estimated to be 1147 billion barrels by the end of 2003. Saudi Arabia
had the largest share of the reserve with almost 23%. (One barrel of oil is approximately 160 litres)

Gas
The global proven gas reserve was estimated to be 176 trillion cubic metres by the end of 2003. The
Russian Federation had the largest share of the reserve with almost 27%.

Indian Energy Scenario

Coal dominates the energy mix in India, contributing to 58% of the total primary energy production.
Over the years, there has been a marked increase in the share of natural gas in primary energy
production from 10% in 1994 to 13% in 1999. There has been a decline in the share of oil in primary
energy production from 20% to 17% during the same period.

Coal Supply

India has huge coal reserves, at least 84,396 million tonnes of proven recoverable reserves (at the end of
2003). This amounts to almost 8.6% of the world reserves and it may last for about 230 years at the
current Reserve to Production (R/P) ratio. In contrast, the world's proven coal reserves are expected to
last only for 192 years at the current R/P ratio.
Reserves/Production (R/P) ratio- If the reserves remaining at the end of the year are divided by the
production in that year, the result is the length of time that the remaining reserves would last if
production were to continue at that level.
India is the fourth largest producer of coal and lignite in the world. Coal production is concentrated in
these states (Andhra Pradesh, Uttar Pradesh, Bihar, Madhya Pradesh, Maharashtra, Orissa, Jharkhand,
West Bengal).

Oil Supply

Oil accounts for about 36 % of India's total energy consumption. India today is one of the top ten oil-
guzzling nations in the world. According to the US Energy Information Administration (EIA), India is
currently ranked behind the United States and China as the world's third-largest oil consumer. It
consumed 206.2 million tonnes (over 4 million bpd) in the 2017-18 fiscal year. India's oil demand is
projected to rise by 5.8 million barrels per day (bpd) by 2040.

Natural Gas Supply

Natural gas accounts for about 8.9 per cent of energy consumption in the country. The current demand
for natural gas is about 96 million cubic metres per day (mcmd) as against availability of 67 mcmd. By
2007, the demand is expected to be around 200 mcmd. Natural gas reserves are estimated at 660 billion
cubic meters.

Electrical Energy Supply

The all India installed capacity of electric power
generating stations under utilities is 3,70,107
MW as on 28.02.2021. following table shows the
details of the same

Thermal 2,33,171
Nuclear 6,780
Hydro 46,209
RES 91,154
Total 3,79,130

SectorWise Energy Consumption in India

Average electricity usage in India stands 1,181 kWh per capita in 2018-2019. The major commercial
energy consuming sectors in the country are classified as shown in the Figure. As seen from the figure,
industry remains the biggest consumer of commercial energy and its share in the overall consumption is
43%.

Energy Needs of Growing Economy

Economic growth is desirable for developing countries, and energy is essential for economic growth.
However, the relationship between economic growth and increased energy demand is not always a
straightforward linear one. For example, under present conditions, 6% increase in India's Gross
Domestic Product (GDP) would impose an increased demand of 9 % on its energy sector.

Industrial
43%

Agriculture
18%

Domestic
23%

Commercial
8%

Traction
2%

Misch.
6%

Thermal
62%

Nuclear
2%

Hydro
12%

RES
24%

In this context, the ratio of energy demand to GDP also termed as energy intensity is a useful indicator.
A high ratio reflects energy dependence and a strong influence of energy on GDP growth. The
developed countries, by focusing on energy efficiency and lower energy-intensive routes, maintain their
energy to GDP ratios at values of less than 1. The ratios for developing countries are much higher.

India's Energy Needs

The plan outlay vis-à-vis share of energy is given in Figure below. As seen from the Figure, in an
average of 18.0% of the total five-year plan outlay is spent on the energy sector.

Per Capita Energy Consumption

The per capita energy consumption is too low for India as compared to developed countries. It is just 4%
of USA and 20% of the world average. The per capita consumption is likely to grow in India with
growth in economy thus increasing the energy demand.

Energy Intensity

Energy intensity is energy consumption per unit of GDP. Energy intensity indicates the development
stage of the country. India's energy intensity is 3.7 times of Japan, 1.55 times of USA, 1.47 times of
Asia and 1.5 times of World average.

Long Term Energy Scenario for India

Coal

Coal is the predominant energy source for power production in India, generating approximately 70% of
total domestic electricity. Energy demand in India is expected to increase over the next 10-15 years;
although new oil and gas plants are planned, coal is expected to remain the dominant fuel for power
generation. Despite significant increases in total installed capacity during the last decade, the gap
between electricity supply and demand continues to increase. The resulting shortfall has had a negative
impact on industrial output and economic growth.
However, to meet expected future demand, indigenous coal production will have to be greatly expanded.
Production currently stands at around 290 Million tonnes per year, but coal demand is expected to more
than double by 2010. Indian coal is typically of poor quality and as such requires to be beneficiated to
improve the quality; Coal imports will also need to increase dramatically to satisfy industrial and power
generation requirements.

Oil

India's demand for petroleum products is likely to rise from 97.7 million tonnes in 2001-02 to around
139.95 million tonnes in 2006-07, according to projections of the Tenth Five-Year Plan. The plan
document puts compound annual growth rate (CAGR) at 3.6 % during the plan period. Domestic crude
oil production is likely to rise marginally from 32.03 million tonnes in 2001-02 to 33.97 million tonnes
by the end of the 10th plan period (2006-07). India's self sufficiency in oil has consistently declined
from 60% in the 50s to 30% currently. Same is expected to go down to 8% by 2020. Around 92% of
India's total oil demand by 2020 has to be met by imports.

Natural Gas

India's natural gas production is likely to rise from 86.56 million cmpd in 2002-03 to 103.08 million
cmpd in 2006-07. It is mainly based on the strength of a more than doubling of production by private
operators to 38.25 mm cmpd.

Electricity

India currently has a peak demand shortage of around 14% and an energy deficit of 8.4%. Keeping this
in view and to maintain a GDP (gross domestic product) growth of 8% to 10%, the Government of India
has very prudently set a target of 215,804 MW power generation capacity by March 2012 from the level
of 100,010 MW as on March 2001, that is a capacity addition of 115,794 MW in the next 11 years. In
the area of nuclear power the objective is to achieve 20,000 MW of nuclear generation capacity by the
year 2020.

Energy from Biomass

Lecture 1

Topics

Introduction
Biomass Conversion Technologies

Introduction

Biomass is a renewable energy resource derived from
the carbonaceous waste of various human and natural
activities. It is derived from numerous sources,
including the by-products from the timber industry,
agricultural crops, raw material from the forest, major
parts of household waste and wood.

Biomass is any sort of vegetation-trees, grasses, plants
parts such as leaves, stems and twigs, and ocean plants.
From it, we can extract a wealth of stored energy.

Introduction

During photosynthesis, plants combine carbon
dioxide from the air and water from the ground
to form carbohydrates, which form the building
blocks of biomass.
The solar energy that drives photosynthesis is
stored in the chemical bonds of the structural
components of biomass. If we burn biomass
efficiently and extract the energy stored in the
chemical bonds, oxygen from the atmosphere
combines with carbon in the plants to produce
carbon dioxide and water.
The process is cyclic and renewable because
the carbon dioxide is then available to produce
new biomass.

Because the released carbon dioxide is used by growing plants in their photosynthesis process, there is no new
carbon dioxide produced or released to the atmosphere. Therefore, there's no net contribution to global carbon
dioxide emissions.

Introduction

Followings are the major biomass
applications:

Biopower — Burning biomass
directly, or converting it into gaseous
or liquid fuels that burn more
efficiently, to generate electricity

Biofuels — Converting biomass into
liquid fuels for transportation

Bioproduct — Converting biomass
into chemicals for making plastics
and other products that typically are
made from petroleum

Ironbridge, United Kingdom – 740MW
With 740MW capacity, the Ironbridge power plant
located in the Severn Gorge, UK, is the world’s
biggest biomass power plant. Ironbridge was
previously a coal-fired power station with an
installed capacity of 1,000MW. Two units of the
plant were converted for biomass-based power
generation in 2013.

Biomass Conversion Technologies

A wide range of technologies have been
developed to utilise the biomass resource.
These vary from direct combustion in
burner systems, to the production of more
advanced biofuels, such as pyrolysis,
through a variety of processing
techniques.
Biomass is converted to energy through
various processes, including. Direct
combustion (burning) to produce heat. In
general the conversion technologies used
are :
• Thermochemical conversion to

produce solid, gaseous, and liquid
fuels.

• Biochemical conversion to produce
liquid and gaseous fuels

Biomass Conversion Technologies

Combustion
Combustion is an exothermic chemical reaction, in which
biomass is burned in the presence of air. In this process
chemical energy which is stored in the biomass is converted
in the mechanical and electrical energies. This process is
suitable for dry biomass containing moisture less than 50%.
Biomass is burned at the temperature of 800-1000 °C. This
process is used for domestic applications as well as
commercially in biomass power plants in order to produce
electricity.

Thermochemical conversion

Biomass Conversion Technologies

Gasification
Gasification is a process that exposes a solid fuel to high temperatures and
limited oxygen, to produce a gaseous fuel. This is a mix of gases such as carbon
monoxide, carbon dioxide, nitrogen, hydrogen and methane and is called
producer gas.

Thermochemical conversion

Gasification is conducted in a closed chamber called gasifier. The figure shows
different sections inside a gasifier.

Drying
Biomass fuels consist of moisture ranging from 5 to 35%. At the temperature of
around 150°C, the water is removed and converted into steam.

Pyrolysis
Pyrolysis is the themal decomposition of biomass fuels in the absence of
oxygen. Pyrolysis involves release of three kinds of products : solid, liquid and
gases. The temperature in this zone is within 150°C to 700°C.

Biomass Conversion Technologies

Gasification Thermochemical conversion

Combustion
Introduced air in the combustion zone. Air contains, besides oxygen and
water vapours, inert gases such as nitrogen and argon. These inert gases are
considered to be non-reactive with fuel constituents. The oxidation takes
place at the temperature of 700-2000o c.

Reduction
In reduction zone, a number of high temperature chemical
reactions take place in the absence of oxygen to produce CO &
Methane

There are various types of gasifiers, but main of them are as
following.

a. Downdraft gasifier
b. Updraft gasifier
c. Cross-draft gasifier

Biomass Conversion Technologies

Gasification Thermochemical conversion

Biomass Conversion Technologies

Gasification Thermochemical conversion

Downdraft Updraft Cross-draft

O
p

ea
rt

io
n

Biomass is introduced from the top
and moves downward. air is

introduced at the top and flows

downward. Producer gas is
extracted at the bottom.

Biomass is introduced from the top and
moves downward. air is introduced at the

bottom and flows upward. Some drying

occurs. Producer gas is extracted at the top.

Biomass is introduced from the top and
moves downward. air is introduced at the

bottom and flows across the bed. Some

drying occurs. Producer gas is extracted
opposite the air nozzle at the grate.

A
d

va
n

ta
ge

s Tar & particulates in the producer
gas is lower.

• Can handle higher moisture biomass
• Higher temperature can destroy some

toxins, minerals & metals.

• Higher tar content.

• Simplest of design.
• Stronger circulation in hot zone

• Lower temperature allow the use of

less expensive construction material.

D
is

ad
va

n
ta

ge
s • Feed size limits

• Scale limitation

• Low heating value

• Moisture-sensitive

• Feed size limits
• High tar yields

• Scale limitations

• Low heating value gas

• Complicated to operate
• Forms slag

• High carbon (33%) content in ash.

Biomass Conversion Technologies

Pyrolysis Thermochemical conversion

Pyrolysis is the basic thermo-chemical process for
converting solid biomass to a more useful liquid
fuel, commonly called a bio-oil. This bio-oil can
be used in existing oil-fired burners (with very
little adjustment) to generate heat & electricity.
The process involves heating solid biomass to a
temperature of around 800oC, in the absence of
oxygen. This forces the volatile substances out of
the biomass, leaving a small quantity of solid
biomass (char). The volatiles are then collected in
liquid form as the bio-oil.

Biomass Conversion Technologies

Digestion Biochemical conversion

Biomass digestion works by the action of
anaerobic bacteria. These microorganisms usually
live at the bottom of swamps or in other places
where there is no air, consuming dead organic
matter to produce, among other things, methane
and hydrogen.
We can put these bacteria to work for us. By
feeding organic matter such as animal dung or
human sewage into tanks – called digesters - and
adding bacteria, we can collect the emitted gas to
use as an energy source. This can be a very
efficient means of extracting usable energy from
such biomass – up to two-thirds of the fuel energy
of the animal dung is recovered.

Biomass Conversion Technologies

Fermentation Biochemical conversion

This process can be used on certain sugar
producing energy crops to produce ethanol,
a simple alcohol. It uses a simple and well
established method; yeast is added to the
biomass and the mixture is then allowed to
ferment under specific conditions. The
resulting brew is then distilled to produce
'bio-ethanol'. This can be used on it’s own
in specialised combustion engines or it can
be mixed with petrol to produce 'gasohol'.

IPv6

Internet Protocol version 6 is a new addressing protocol designed to incorporate all the possible
requirements of future Internet known to us as Internet version 2. This protocol as its predecessor
IPv4, works on the Network Layer (Layer-3). Along with its offering of an enormous amount of
logical address space, this protocol has ample features to which address the shortcoming of IPv4.

Why New IP Version?
So far, IPv4 has proven itself as a robust routable addressing protocol and has served us for
decades on its best-effort-delivery mechanism.

IPv4 is 32 bits long and offers around 4,294,967,296 (232) addresses. This address space was
considered more than enough that time. Given below are the major points that played a key role in
the birth of IPv6:

 Internet has grown exponentially and the address space allowed by IPv4 is saturating.
There is a requirement to have a protocol that can satisfy the needs of future Internet
addresses that is expected to grow in an unexpected manner.

 IPv4 on its own does not provide any security feature. Data has to be encrypted with some
other security application before being sent on the Internet.

 Data prioritization in IPv4 is not up to date. Though IPv4 has a few bits reserved for Type of
Service or Quality of Service, but they do not provide much functionality.

 IPv4 enabled clients can be configured manually or they need some address configuration
mechanism. It does not have a mechanism to configure a device to have globally unique IP
address.

:IPv6 – Features:
The successor of IPv4 is not designed to be backward compatible. Trying to keep the basic
functionalities of IP addressing, IPv6 is redesigned entirely. It offers the following features:

 Larger Address Space

In contrast to IPv4, IPv6 uses 4 times more bits to address a device on the Internet. This
much of extra bits can provide approximately 3.4×1038 different combinations of
addresses. This address can accumulate the aggressive requirement of address allotment
for almost everything in this world. According to an estimate, 1564 addresses can be
allocated to every square meter of this earth.

 Simplified Header

IPv6’s header has been simplified by moving all unnecessary information and options
(which are present in IPv4 header) to the end of the IPv6 header. IPv6 header is only twice
as bigger than IPv4 provided the fact that IPv6 address is four times longer.

 End-to-end Connectivity

Every system now has unique IP address and can traverse through the Internet without
using NAT or other translating components. After IPv6 is fully implemented, every host can
directly reach other hosts on the Internet, with some limitations involved like Firewall,
organization policies, etc.

 Auto-configuration

IPv6 supports both stateful and stateless auto configuration mode of its host devices. This
way, absence of a DHCP server does not put a halt on inter segment communication.

 Faster Forwarding/Routing

Simplified header puts all unnecessary information at the end of the header. The
information contained in the first part of the header is adequate for a Router to take
routing decisions, thus making routing decision as quickly as looking at the mandatory
header.

 IPSec

Initially it was decided that IPv6 must have IPSec security, making it more secure than
IPv4. This feature has now been made optional.

 No Broadcast

Though Ethernet/Token Ring are considered as broadcast network because they support
Broadcasting, IPv6 does not have any broadcast support any more. It uses multicast to
communicate with multiple hosts.

 Anycast Support

This is another characteristic of IPv6. IPv6 has introduced Anycast mode of packet routing.
In this mode, multiple interfaces over the Internet are assigned same Anycast IP address.
Routers, while routing, send the packet to the nearest destination.

 Mobility

IPv6 was designed keeping mobility in mind. This feature enables hosts (such as mobile
phone) to roam around in different geographical area and remain connected with the same
IP address. The mobility feature of IPv6 takes advantage of auto IP configuration and
Extension headers.

 Enhanced Priority Support

IPv4 used 6 bits DSCP (Differential Service Code Point) and 2 bits ECN (Explicit Congestion
Notification) to provide Quality of Service but it could only be used if the end-to-end
devices support it, that is, the source and destination device and underlying network must
support it.

In IPv6, Traffic class and Flow label are used to tell the underlying routers how to
efficiently process the packet and route it.

 Smooth Transition

Large IP address scheme in IPv6 enables to allocate devices with globally unique IP
addresses. This mechanism saves IP addresses and NAT is not required. So devices can
send/receive data among each other, for example, VoIP and/or any streaming media can
be used much efficiently.

Other fact is, the header is less loaded, so routers can take forwarding decisions and
forward them as quickly as they arrive.

 Extensibility

One of the major advantages of IPv6 header is that it is extensible to add more information
in the option part. IPv4 provides only 40-bytes for options, whereas options in IPv6 can be
as much as the size of IPv6 packet itself.

Addressing Modes

In computer networking, addressing mode refers to the mechanism of hosting an address on the
network. IPv6 offers several types of modes by which a single host can be addressed. More than
one host can be addressed at once or the host at the closest distance can be addressed.

Unicast:

In unicast mode of addressing, an IPv6 interface (host) is uniquely identified in a network
segment. The IPv6 packet contains both source and destination IP addresses. A host interface is
equipped with an IP address which is unique in that network segment.When a network switch or a
router receives a unicast IP packet, destined to a single host, it sends out one of its outgoing
interface which connects to that particular host.

Multicast

The IPv6 multicast mode is same as that of IPv4. The packet destined to multiple hosts is sent on a
special multicast address. All the hosts interested in that multicast information, need to join that
multicast group first. All the interfaces that joined the group receive the multicast packet and
process it, while other hosts not interested in multicast packets ignore the multicast information.

Anycast

IPv6 has in introduced a new type of addressing, which is called Anycast addressing. In this
addressing mode, multiple interfaces (hosts) are assigned same Anycast IP address. When a host
wishes to communicate with a host equipped with an Anycast IP address, it sends a Unicast

message. With the help of complex routing mechanism, that Unicast message is delivered to the
host closest to the Sender in terms of Routing cost.

Let’s take an example of TutorialPoints.com Web Servers, located in all continents. Assume that all
the Web Servers are assigned a single IPv6 Anycast IP Address. Now when a user from Europe
wants to reach TutorialsPoint.com the DNS points to the server that is physically located in Europe
itself. If a user from India tries to reach Tutorialspoint.com, the DNS will then point to the Web
Server physically located in Asia. Nearest or Closest terms are used in terms of Routing Cost.

In the above picture, when a client computer tries to reach a server, the request is forwarded to
the server with the lowest Routing Cost.

IPv6 - Address Types & Formats

Address Structure

An IPv6 address is made of 128 bits divided into eight 16-bits blocks. Each block is then converted
into 4-digit Hexadecimal numbers separated by colon symbols.

For example, given below is a 128 bit IPv6 address represented in binary format and divided into
eight 16-bits blocks:

0010000000000001 0000000000000000 0011001000111000 1101111111100001
0000000001100011 0000000000000000 0000000000000000 1111111011111011

Each block is then converted into Hexadecimal and separated by ‘:’ symbol:

2001:0000:3238:DFE1:0063:0000:0000:FEFB

Even after converting into Hexadecimal format, IPv6 address remains long. IPv6 provides some
rules to shorten the address. The rules are as follows:

Rule.1: Discard leading Zero(es):

In Block 5, 0063, the leading two 0s can be omitted, such as (5th block):

2001:0000:3238:DFE1:63:0000:0000:FEFB

Rule.2: If two of more blocks contain consecutive zeroes, omit them all and replace with double
colon sign ::, such as (6th and 7th block):

2001:0000:3238:DFE1:63::FEFB

Consecutive blocks of zeroes can be replaced only once by :: so if there are still blocks of zeroes in
the address, they can be shrunk down to a single zero, such as (2nd block):

2001:0:3238:DFE1:63::FEFB

Interface ID

IPv6 has three different types of Unicast Address scheme. The second half of the address (last 64
bits) is always used for Interface ID. The MAC address of a system is composed of 48-bits and
represented in Hexadecimal. MAC addresses are considered to be uniquely assigned worldwide.
Interface ID takes advantage of this uniqueness of MAC addresses. A host can auto-configure its
Interface ID by using IEEE’s Extended Unique Identifier (EUI-64) format. First, a host divides its
own MAC address into two 24-bits halves. Then 16-bit Hex value 0xFFFE is sandwiched into those
two halves of MAC address, resulting in EUI-64 Interface ID.

Conversion of EUI-64 ID into IPv6 Interface Identifier

To convert EUI-64 ID into IPv6 Interface Identifier, the most significant 7th bit of EUI-64 ID is
complemented. For example:

Global Unicast Address

This address type is equivalent to IPv4’s public address. Global Unicast addresses in IPv6 are
globally identifiable and uniquely addressable.

Global Routing Prefix: The most significant 48-bits are designated as Global Routing Prefix which
is assigned to specific autonomous system. The three most significant bits of Global Routing Prefix
is always set to 001.

Link-Local Address

Auto-configured IPv6 address is known as Link-Local address. This address always starts with
FE80. The first 16 bits of link-local address is always set to 1111 1110 1000 0000 (FE80). The next
48-bits are set to 0, thus:

Link-local addresses are used for communication among IPv6 hosts on a link (broadcast segment)
only. These addresses are not routable, so a Router never forwards these addresses outside the
link.

Unique-Local Address

This type of IPv6 address is globally unique, but it should be used in local communication. The
second half of this address contain Interface ID and the first half is divided among Prefix, Local Bit,
Global ID and Subnet ID.

Prefix is always set to 1111 110. L bit, is set to 1 if the address is locally assigned. So far, the
meaning of L bit to 0 is not defined. Therefore, Unique Local IPv6 address always starts with ‘FD’.

IPv6 - Special Addresses

Version 6 has slightly complex structure of IP address than that of IPv4. IPv6 has reserved a few
addresses and address notations for special purposes. See the table below:

 As shown in the table, the address 0:0:0:0:0:0:0:0/128 does not specify anything and is said

to be an unspecified address. After simplifying, all the 0s are compacted to ::/128.

 In IPv4, the address 0.0.0.0 with netmask 0.0.0.0 represents the default route. The same
concept is also applied to IPv6, address 0:0:0:0:0:0:0:0 with netmask all 0s represents the
default route. After applying IPv6 rule, this address is compressed to ::/0.

 Loopback addresses in IPv4 are represented by 127.0.0.1 to 127.255.255.255 series. But in
IPv6, only 0:0:0:0:0:0:0:1/128 represents the Loopback address. After loopback address, it
can be represented as ::1/128.

Reserved Multicast Address for Routing Protocols

 The above table shows the reserved multicast addresses used by interior routing protocol.

 The addresses are reserved following the same rules of IPv4.

Reserved Multicast Address for Routers/Node

 These addresses help routers and hosts to speak to available routers and hosts on a

segment without being configured with an IPv6 address. Hosts use EUI-64 based auto-
configuration to self-configure an IPv6 address and then speak to available hosts/routers
on the segment by means of these addresses.

IPv6 - Headers

The wonder of IPv6 lies in its header. An IPv6 address is 4 times larger than IPv4, but surprisingly,
the header of an IPv6 address is only 2 times larger than that of IPv4. IPv6 headers have one Fixed
Header and zero or more Optional (Extension) Headers. All the necessary information that is
essential for a router is kept in the Fixed Header. The Extension Header contains optional
information that helps routers to understand how to handle a packet/flow.

Fixed Header

IPv6 fixed header is 40 bytes long and contains the following information.

S.N. Field & Description

1 Version (4-bits): It represents the version of Internet Protocol, i.e. 0110.

2 Traffic Class (8-bits): These 8 bits are divided into two parts. The most
significant 6 bits are used for Type of Service to let the Router Known
what services should be provided to this packet. The least significant 2
bits are used for Explicit Congestion Notification (ECN).

3 Flow Label (20-bits): This label is used to maintain the sequential flow of
the packets belonging to a communication. The source labels the
sequence to help the router identify that a particular packet belongs to a
specific flow of information. This field helps avoid re-ordering of data
packets. It is designed for streaming/real-time media.

4 Payload Length (16-bits): This field is used to tell the routers how much
information a particular packet contains in its payload. Payload is
composed of Extension Headers and Upper Layer data. With 16 bits, up
to 65535 bytes can be indicated; but if the Extension Headers contain
Hop-by-Hop Extension Header, then the payload may exceed 65535
bytes and this field is set to 0.

5 Next Header (8-bits): This field is used to indicate either the type of
Extension Header, or if the Extension Header is not present then it
indicates the Upper Layer PDU. The values for the type of Upper Layer
PDU are same as IPv4’s.

6 Hop Limit (8-bits): This field is used to stop packet to loop in the
network infinitely. This is same as TTL in IPv4. The value of Hop Limit
field is decremented by 1 as it passes a link (router/hop). When the field
reaches 0 the packet is discarded.

7 Source Address (128-bits): This field indicates the address of originator
of the packet.

8 Destination Address (128-bits): This field provides the address of
intended recipient of the packet.

Extension Headers

In IPv6, the Fixed Header contains only that much information which is necessary, avoiding those
information which is either not required or is rarely used. All such information is put between the
Fixed Header and the Upper layer header in the form of Extension Headers. Each Extension Header
is identified by a distinct value.

When Extension Headers are used, IPv6 Fixed Header’s Next Header field points to the first
Extension Header. If there is one more Extension Header, then the first Extension Header’s ‘Next-
Header’ field points to the second one, and so on. The last Extension Header’s ‘Next-Header’ field
points to the Upper Layer Header. Thus, all the headers points to the next one in a linked list
manner.

If the Next Header field contains the value 59, it indicates that there are no headers after this
header, not even Upper Layer Header.

The following Extension Headers must be supported as per RFC 2460:

The sequence of Extension Headers should be:

These headers:

 1. should be processed by First and subsequent destinations.

 2. should be processed by Final Destination.

Extension Headers are arranged one after another in a linked list manner, as depicted in the
following diagram:

IPv6 - Communication
In IPv4, a host that wants to communicate with another host on the network needs to have an IP
address acquired either by means of DHCP or by manual configuration. As soon as a host is
equipped with some valid IP address, it can speak to any host on the subnet. To communicate on
layer-3, a host must also know the IP address of the other host. Communication on a link, is

established by means of hardware embedded MAC Addresses. To know the MAC address of a host
whose IP address is known, a host sends ARP broadcast and in return, the intended host sends
back its MAC address.

In IPv6, there are no broadcast mechanisms. It is not a must for an IPv6 enabled host to obtain an
IP address from DHCP or manually configured, but it can auto-configure its own IP.

ARP has been replaced by ICMPv6 Neighbor Discovery Protocol.

Neighbor Discovery Protocol

A host in IPv6 network is capable of auto-configuring itself with a unique link-local address. As
soon as host gets an IPv6 address, it joins a number of multicast groups. All communications
related to that segment take place on those multicast addresses only. A host goes through a series
of states in IPv6:

 Neighbor Solicitation: After configuring all IPv6’s either manually, or by DHCP Server or
by auto-configuration, the host sends a Neighbor Solicitation message out to FF02::1/16
multicast address for all its IPv6 addresses in order to know that no one else occupies the
same addresses.

 DAD (Duplicate Address Detection): When the host does not listen from anything from
the segment regarding its Neighbor Solicitation message, it assumes that no duplicate
address exists on the segment.

 Neighbor Advertisement: After assigning the addresses to its interfaces and making them
up and running, the host once again sends out a Neighbor Advertisement message telling
all other hosts on the segment, that it has assigned those IPv6 addresses to its interfaces.

Once a host is done with the configuration of its IPv6 addresses, it does the following things:

 Router Solicitation: A host sends a Router Solicitation multicast packet (FF02::2/16) out
on its segment to know the presence of any router on this segment. It helps the host to
configure the router as its default gateway. If its default gateway router goes down, the
host can shift to a new router and makes it the default gateway.

 Router Advertisement: When a router receives a Router Solicitation message, it response
back to the host, advertising its presence on that link.

 Redirect: This may be the situation where a Router receives a Router Solicitation request
but it knows that it is not the best gateway for the host. In this situation, the router sends
back a Redirect message telling the host that there is a better ‘next-hop’ router available.
Next-hop is where the host will send its data destined to a host which does not belong to
the same segment.

IPv6 - Subnetting

In IPv4, addresses were created in classes. Classful IPv4 addresses clearly define the bits used for

network prefixes and the bits used for hosts on that network. To subnet in IPv4, we play with the

default classful netmask which allows us to borrow host bits to be used as subnet bits. This results

in multiple subnets but less hosts per subnet. That is, when we borrow host bits to create a subnet,

it costs us in lesser bit to be used for host addresses.

IPv6 addresses use 128 bits to represent an address which includes bits to be used for subnetting.

The second half of the address (least significant 64 bits) is always used for hosts only. Therefore,

there is no compromise if we subnet the network.

[Image:
IPv6 Subnetting]

16 bits of subnet is equivalent to IPv4’s Class B Network. Using these subnet bits, an organization

can have another 65 thousands of subnets which is by far, more than enough.

Thus routing prefix is /64 and host portion is 64 bits. We can further subnet the network beyond

16 bits of Subnet ID, by borrowing host bits; but it is recommended that 64 bits should always be

used for hosts addresses because auto-configuration requires 64 bits.

IPv6 subnetting works on the same concept as Variable Length Subnet Masking in IPv4.

/48 prefix can be allocated to an organization providing it the benefit of having up to /64 subnet

prefixes, which is 65535 sub-networks, each having 264hosts. A /64 prefix can be assigned to a

point-to-point connection where there are only two hosts (or IPv6 enabled devices) on a link.

Transition From IPv4 to IPv6

Advertisements

Complete transition from IPv4 to IPv6 might not be possible because IPv6 is not backward

compatible. This results in a situation where either a site is on IPv6 or it is not. It is unlike

implementation of other new technologies where the newer one is backward compatible so the

older system can still work with the newer version without any additional changes.

To overcome this short-coming, we have a few technologies that can be used to ensure slow and

smooth transition from IPv4 to IPv6.

Dual Stack Routers

A router can be installed with both IPv4 and IPv6 addresses configured on its interfaces pointing

to the network of relevant IP scheme.

In the above diagram, a server having IPv4 as well as IPv6 address configured for it can now speak

with all the hosts on both the IPv4 as well as the IPv6 networks with the help of a Dual Stack

Router. The Dual Stack Router, can communicate with both the networks. It provides a medium for

the hosts to access a server without changing their respective IP versions.

Tunneling

In a scenario where different IP versions exist on intermediate path or transit networks, tunneling

provides a better solution where user’s data can pass through a non-supported IP version.

The above diagram depicts how two remote IPv4 networks can communicate via a Tunnel, where

the transit network was on IPv6. Vice versa is also possible where the transit network is on IPv6

and the remote sites that intend to communicate are on IPv4.

NAT Protocol Translation

This is another important method of transition to IPv6 by means of a NAT-PT (Network Address

Translation – Protocol Translation) enabled device. With the help of a NAT-PT device, actual can

take place happens between IPv4 and IPv6 packets and vice versa. See the diagram below:

A host with IPv4 address sends a request to an IPv6 enabled server on Internet that does not

understand IPv4 address. In this scenario, the NAT-PT device can help them communicate. When

the IPv4 host sends a request packet to the IPv6 server, the NAT-PT device/router strips down the

IPv4 packet, removes IPv4 header, and adds IPv6 header and passes it through the Internet. When

a response from the IPv6 server comes for the IPv4 host, the router does vice versa.

IPv6 - Routing

Routing concepts remain same in case of IPv6 but almost all routing protocols have been redefined

accordingly. We discussed earlier, how a host speaks to its gateway. Routing is a process to

forward routable data choosing the best route among several available routes or path to the

destination. A router is a device that forwards data that is not explicitly destined to it.

There exists two forms of routing protocols:

 Distance Vector Routing Protocol: A router running distance vector protocol advertises

its connected routes and learns new routes from its neighbors. The routing cost to reach a

destination is calculated by means of hops between the source and destination. A router

generally relies on its neighbor for best path selection, also known as “routing-by-rumors”.

RIP and BGP are Distance Vector Protocols.

 Link-State Routing Protocol: This protocol acknowledges the state of a Link and

advertises to its neighbors. Information about new links is learnt from peer routers. After

all the routing information has been converged, the Link-State Routing Protocol uses its

own algorithm to calculate the best path to all available links. OSPF and IS-IS are link state

routing protocols and both of them use Dijkstra’s Shortest Path First algorithm.

Routing protocols can be divided in two categories:

 Interior Routing Protocol: Protocols in this categories are used within an autonomous

system or organization to distribute routes among all routers inside its boundary.

Examples: RIP, OSPF.

 Exterior Routing Protocol: An Exterior Routing Protocol distributes routing information

between two different autonomous systems or organization. Examples: BGP.

Routing protocols

 RIPng

RIPng stands for Routing Information Protocol Next Generation. This is an Interior Routing

Protocol and is a Distance Vector Protocol. RIPng has been upgraded to support IPv6.

 OSPFv3

Open Shortest Path First version 3 is an Interior Routing Protocol which is modified to

support IPv6. This is a Link-State Protocol and uses Djikrasta’s Shortest Path First

algorithm to calculate best path to all destinations.

 BGPv4

BGP stands for Border Gateway Protocol. It is the only open standard Exterior Gateway

Protocol available. BGP is a Distance Vector protocol which takes Autonomous System as

calculation metric, instead of the number of routers as Hop. BGPv4 is an upgrade of BGP to

support IPv6 routing.

Protocols Changed to Support IPv6

 ICMPv6: Internet Control Message Protocol version 6 is an upgraded implementation of

ICMP to accommodate IPv6 requirements. This protocol is used for diagnostic functions,

error and information message, statistical purposes. ICMPv6’s Neighbor Discovery

Protocol replaces ARP and helps discover neighbor and routers on the link.

 DHCPv6: Dynamic Host Configuration Protocol version 6 is an implementation of DHCP.

IPv6 enabled hosts do not require any DHCPv6 Server to acquire IP address as they can be

auto-configured. Neither do they need DHCPv6 to locate DNS server because DNS can be

discovered and configured via ICMPv6 Neighbor Discovery Protocol. Yet DHCPv6 Server

can be used to provide these information.

 DNS: There has been no new version of DNS but it is now equipped with extensions to

provide support for querying IPv6 addresses. A new AAAA (quad-A) record has been

added to reply IPv6 query messages. Now the DNS can reply with both IP versions (4 & 6)

without any change in the query format.

IPv6 - Mobility

When a host is connected to a link or network, it acquires an IP address and all communication

take place using that IP address on that link. As soon as, the same host changes its physical

location, that is, moves into another area / subnet / network / link, its IP address changes

accordingly, and all the communication taking place on the host using old IP address, goes down.

IPv6 mobility provides a mechanism for the host to roam around different links without losing any

communication/connection and its IP address.

Multiple entities are involved in this technology:

 Mobile Node: The device that needs IPv6 mobility.

 Home Link: This link is configured with the home subnet prefix and this is where the

Mobile IPv6 device gets its Home Address.

 Home Address: This is the address which the Mobile Node acquires from the Home Link.

This is the permanent address of the Mobile Node. If the Mobile Node remains in the same

Home Link, the communication among various entities take place as usual.

 Home Agent: This is a router that acts as a registrar for Mobile Nodes. Home Agent is

connected to Home Link and maintains information about all Mobile Nodes, their Home

Addresses, and their present IP addresses.

 Foreign Link: Any other Link that is not Mobile Node’s Home Link.

 Care-of Address: When a Mobile Node gets attached to a Foreign Link, it acquires a new IP

address of that Foreign Link’s subnet. Home Agent maintains the information of both

Home Address and Care-of Address. Multiple Care-of addresses can be assigned to a Mobile

Node, but at any instance, only one Care-of Address has binding with the Home Address.

 Correspondent Node: Any IPv6 enabled device that intends to have communication with

Mobile Node.

Mobility Operation

When Mobile Node stays in its Home Link, all communications take place on its Home Address as

shown below:

 Mobile Node connected to Home Link]

When a Mobile Node leaves its Home Link and is connected to some Foreign Link, the Mobility

feature of IPv6 comes into play. After getting connected to a Foreign Link, the Mobile Node

acquires an IPv6 address from the Foreign Link. This address is called Care-of Address. The Mobile

Node sends a binding request to its Home Agent with the new Care-of Address. The Home Agent

binds the Mobile Node’s Home Address with the Care-of Address, establishing a Tunnel between

both.

Whenever a Correspondent Node tries to establish connection with the Mobile Node (on its Home

Address), the Home Agent intercepts the packet and forwards to Mobile Node’s Care-of Address

over the Tunnel which was already established.

Mobile Node connected to Foreign Link]

Route Optimization

When a Correspondent Node initiates a communication by sending packets to Mobile the Node on

the Home Address, these packets are tunneled to the Mobile Node by the Home Agent. In Route

Optimization mode, when the Mobile Node receives a packet from the Correspondent Node, it does

not forward replies to the Home Agent. Rather, it sends its packet directly to the Correspondent

Node using Home Address as Source Address. This mode is optional and not used by default.

IT-5th Semester
Operating System (PCC-CS502)

Lecture-13

Resource Allocation Graphs:

Deadlocks can be described more precisely in terms of a directed graph called a system resource
allocation graph. This graph consists of a set of vertices V and a set of edges E. The set of vertices is
portioned into two different types of nodes P={P0, P1… Pn}, the set of the active processes in the system,
and R={R0, R1… Rn}, the set consisting of all resource types in the system. A directed edge from a process
Pi to resource type Rj signifies that process Pi requested an instance of Rj and is waiting for that resource.
A directed edge from Rj to Pi signifies that an instance of Rj has been allocated to Pi.

• Process

• Resource Type with 2 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

 R1 R3

 R2 R4

 P1
 P3 P2

The resource allocation graph shown above depicts the following situation:
 P= {P1, P2, P3 }
 R= {R1, R2, R3}
 E= {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, P3 → R3}

Resource Instances
 One instance of resource type R1
 Two instances of resource type R2
 One instance of resource type R3
 Three instances of resource type R4

Process States
 Process P1 is holding an instance of resource R2, and is waiting for an instance of resource R1.
 Process P2 is holding an instance of resource R1 and R2, and is waiting for an instance of resource R3.
 Process P3 is holding an instance of resource R3.

Given the definition of a resource allocation graph, it can be shown that if the graph contains no cycles,
then no process is deadlocked.

If the graph contains cycles then:

 If only one instance per resource type, then a deadlock exists.
 If several instances per resource type, possibility of deadlock exists.

Here is a resource allocation graph with a deadlock. There are two cycles in this graph:
{P1 → R1, R1 → P2, P2 → R3, R3 → P3, P3 → R2, R2 → P1} and
{P2 → R3, R3 → P3, P3 → R2, R2 → P2}
No process will release an already acquired resource and the three processes will remain in the deadlock
state.

The graph shown above has a cycle but there is no deadlock because processes P2 and P4 do not require
further resources to complete their execution and will release the resources they are currently hold in
finite time. These resources can then be allocated to P1 and P3 for them to resume their execution.

UNIT III – INTERMEDIATE CODE GENERATION

INTRODUCTION

The front end translates a source program into an intermediate representation from which
the back end generates target code.

Benefits of using a machine-independent intermediate form are:

1. Retargeting is facilitated. That is, a compiler for a different machine can be created by
attaching a back end for the new machine to an existing front end.

2. A machine-independent code optimizer can be applied to the intermediate representation.

Position of intermediate code generator

intermediate

code

INTERMEDIATE LANGUAGES

Three ways of intermediate representation:

 Syntax tree

 Postfix notation

 Three address code

The semantic rules for generating three-address code from common programming language
constructs are similar to those for constructing syntax trees or for generating postfix notation.

Graphical Representations:

Syntax tree:

A syntax tree depicts the natural hierarchical structure of a source program. A dag
(Directed Acyclic Graph) gives the same information but in a more compact way because
common subexpressions are identified. A syntax tree and dag for the assignment statement a : =
b * - c + b * - c are as follows:

parser static
checker

intermediate
code generator

code
generator

http://csetube.weebly.com/
http://csetube.weebly.com/

assign assign

a + a +

* * *

b uminus b uminus b uminus

c c c

(a) Syntax tree (b) Dag

Postfix notation:

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of
the tree in which a node appears immediately after its children. The postfix notation for the
syntax tree given above is

a b c uminus * b c uminus * + assign

Syntax-directed definition:

Syntax trees for assignment statements are produced by the syntax-directed definition.
Non-terminal S generates an assignment statement. The two binary operators + and * are
examples of the full operator set in a typical language. Operator associativities and precedences
are the usual ones, even though they have not been put into the grammar. This definition
constructs the tree from the input a : = b * - c + b* - c.

PRODUCTION SEMANTIC RULE

S id : = E S.nptr : = mknode(‘assign’,mkleaf(id, id.place), E.nptr)

E E1 + E2 E.nptr : = mknode(‘+’, E1.nptr, E2.nptr)

E E1 * E2 E.nptr : = mknode(‘*’, E1.nptr, E2.nptr)

E - E1 E.nptr : = mknode(‘uminus’, E1.nptr)

E (E1) E.nptr : = E1.nptr

E id E.nptr : = mkleaf(id, id.place)

Syntax-directed definition to produce syntax trees for assignment statements

http://csetube.weebly.com/
http://csetube.weebly.com/

The token id has an attribute place that points to the symbol-table entry for the identifier.
A symbol-table entry can be found from an attribute id.name, representing the lexeme associated
with that occurrence of id. If the lexical analyzer holds all lexemes in a single array of
characters, then attribute name might be the index of the first character of the lexeme.

Two representations of the syntax tree are as follows. In (a) each node is represented as a
record with a field for its operator and additional fields for pointers to its children. In (b), nodes
are allocated from an array of records and the index or position of the node serves as the pointer
to the node. All the nodes in the syntax tree can be visited by following pointers, starting from
the root at position 10.

Two representations of the syntax tree

aaaaaaaaaaaaa 0

1

2 2

3

4

5

6

7

8

9

10

(a) (b)

Three-Address Code:

Three-address code is a sequence of statements of the general form

x : = y op z

where x, y and z are names, constants, or compiler-generated temporaries; op stands for any
operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on boolean-
valued data. Thus a source language expression like x+ y*z might be translated into a sequence

t1 : = y * z
t2 : = x + t1

where t1 and t2 are compiler-generated temporary names.

assign

id a

+

* *

id b id b
bb

uminus uminus

id c id c

id b

id c

uminus 1

* 0 2

id b

id c

uminus 5

* 4 6

+ 3 7

id a

assign 9 8

http://csetube.weebly.com/
http://csetube.weebly.com/

Advantages of three-address code:

 The unraveling of complicated arithmetic expressions and of nested flow-of-control
statements makes three-address code desirable for target code generation and
optimization.

 The use of names for the intermediate values computed by a program allows three-
address code to be easily rearranged – unlike postfix notation.

Three-address code is a linearized representation of a syntax tree or a dag in which
explicit names correspond to the interior nodes of the graph. The syntax tree and dag are
represented by the three-address code sequences. Variable names can appear directly in three-
address statements.

Three-address code corresponding to the syntax tree and dag given above

t1 : = - c t1 : = -c

t2 : = b * t1 t2 : = b * t1

t3 : = - c t5 : = t2 + t2

t4 : = b * t3 a : = t5

t5 : = t2 + t4

a : = t5

(a) Code for the syntax tree (b) Code for the dag

The reason for the term “three-address code” is that each statement usually contains three
addresses, two for the operands and one for the result.

Types of Three-Address Statements:

The common three-address statements are:

1. Assignment statements of the form x : = y op z, where op is a binary arithmetic or logical
operation.

2. Assignment instructions of the form x : = op y, where op is a unary operation. Essential unary
operations include unary minus, logical negation, shift operators, and conversion operators
that, for example, convert a fixed-point number to a floating-point number.

3. Copy statements of the form x : = y where the value of y is assigned to x.

4. The unconditional jump goto L. The three-address statement with label L is the next to be
executed.

5. Conditional jumps such as if x relop y goto L. This instruction applies a relational operator (
<, =, >=, etc.) to x and y, and executes the statement with label L next if x stands in relation

http://csetube.weebly.com/
http://csetube.weebly.com/

relop to y. If not, the three-address statement following if x relop y goto L is executed next,
as in the usual sequence.

6. param x and call p, n for procedure calls and return y, where y representing a returned value
is optional. For example,

param x1

param x2

. . .
param xn

call p,n
generated as part of a call of the procedure p(x1, x2, …. ,xn).

7. Indexed assignments of the form x : = y[i] and x[i] : = y.

8. Address and pointer assignments of the form x : = &y , x : = *y, and *x : = y.

Syntax-Directed Translation into Three-Address Code:

When three-address code is generated, temporary names are made up for the interior
nodes of a syntax tree. For example, id : = E consists of code to evaluate E into some temporary
t, followed by the assignment id.place : = t.

Given input a : = b * - c + b * - c, the three-address code is as shown above. The
synthesized attribute S.code represents the three-address code for the assignment S.
The nonterminal E has two attributes :
1. E.place, the name that will hold the value of E , and
2. E.code, the sequence of three-address statements evaluating E.

Syntax-directed definition to produce three-address code for assignments

PRODUCTION SEMANTIC RULES

S id : = E S.code : = E.code || gen(id.place ‘:=’ E.place)

E E1 + E2 E.place := newtemp;
E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘+’ E2.place)

E E1 * E2 E.place := newtemp;
E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘*’ E2.place)

E - E1 E.place := newtemp;
E.code := E1.code || gen(E.place ‘:=’ ‘uminus’ E1.place)

E (E1) E.place : = E1.place;
E.code : = E1.code

E id E.place : = id.place;
E.code : = ‘ ‘

http://csetube.weebly.com/
http://csetube.weebly.com/

Semantic rules generating code for a while statement

S.begin:

E.code

if E.place = 0 goto S.after

S1.code

goto S.begin

S.after: . . .

PRODUCTION SEMANTIC RULES

S while E do S1 S.begin := newlabel;
S.after := newlabel;
S.code := gen(S.begin ‘:’) ||

E.code ||
gen (‘if’ E.place ‘=’ ‘0’ ‘goto’ S.after)||
S1.code ||
gen (‘goto’ S.begin) ||
gen (S.after ‘:’)

 The function newtemp returns a sequence of distinct names t1,t2,….. in response to
successive calls.

 Notation gen(x ‘:=’ y ‘+’ z) is used to represent three-address statement x := y + z.
Expressions appearing instead of variables like x, y and z are evaluated when passed to
gen, and quoted operators or operand, like ‘+’ are taken literally.

 Flow-of–control statements can be added to the language of assignments. The code for S
 while E do S1 is generated using new attributes S.begin and S.after to mark the first
statement in the code for E and the statement following the code for S, respectively.

 The function newlabel returns a new label every time it is called.
 We assume that a non-zero expression represents true; that is when the value of E

becomes zero, control leaves the while statement.

Implementation of Three-Address Statements:

A three-address statement is an abstract form of intermediate code. In a compiler,
these statements can be implemented as records with fields for the operator and the operands.
Three such representations are:

http://csetube.weebly.com/
http://csetube.weebly.com/

 Quadruples

 Triples

 Indirect triples

Quadruples:

 A quadruple is a record structure with four fields, which are, op, arg1, arg2 and result.

 The op field contains an internal code for the operator. The three-address statement x : =
y op z is represented by placing y in arg1, z in arg2 and x in result.

 The contents of fields arg1, arg2 and result are normally pointers to the symbol-table
entries for the names represented by these fields. If so, temporary names must be entered
into the symbol table as they are created.

Triples:

 To avoid entering temporary names into the symbol table, we might refer to a temporary
value by the position of the statement that computes it.

 If we do so, three-address statements can be represented by records with only three fields:
op, arg1 and arg2.

 The fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table
or pointers into the triple structure (for temporary values).

 Since three fields are used, this intermediate code format is known as triples.

op arg1 arg2 result op arg1 arg2

(0) uminus c t1 (0) uminus c

(1) * b t1 t2 (1) * b (0)

(2) uminus c t3 (2) uminus c

(3) * b t3 t4 (3) * b (2)

(4) + t2 t4 t5 (4) + (1) (3)

(5) : = t3 a (5) assign a (4)

(a) Quadruples (b) Triples

Quadruple and triple representation of three-address statements given above

http://csetube.weebly.com/
http://csetube.weebly.com/

A ternary operation like x[i] : = y requires two entries in the triple structure as shown as below
while x : = y[i] is naturally represented as two operations.

op arg1 arg2 op arg1 arg2

(0) [] = x i (0) = [] y i

(1) assign (0) y (1) assign x (0)

(a) x[i] : = y (b) x : = y[i]

Indirect Triples:

 Another implementation of three-address code is that of listing pointers to triples, rather
than listing the triples themselves. This implementation is called indirect triples.

 For example, let us use an array statement to list pointers to triples in the desired order.
Then the triples shown above might be represented as follows:

statement op arg1 arg2

(0) (14) (14) uminus c
(1) (15) (15) * b (14)
(2) (16) (16) uminus c
(3) (17) (17) * b (16)
(4) (18) (18) + (15) (17)
(5) (19) (19) assign a (18)

Indirect triples representation of three-address statements

DECLARATIONS

As the sequence of declarations in a procedure or block is examined, we can lay out
storage for names local to the procedure. For each local name, we create a symbol-table entry
with information like the type and the relative address of the storage for the name. The relative
address consists of an offset from the base of the static data area or the field for local data in an
activation record.

http://csetube.weebly.com/
http://csetube.weebly.com/

Declarations in a Procedure:
The syntax of languages such as C, Pascal and Fortran, allows all the declarations in a

single procedure to be processed as a group. In this case, a global variable, say offset, can keep
track of the next available relative address.

In the translation scheme shown below:

 Nonterminal P generates a sequence of declarations of the form id : T.

 Before the first declaration is considered, offset is set to 0. As each new name is seen ,
that name is entered in the symbol table with offset equal to the current value of offset,
and offset is incremented by the width of the data object denoted by that name.

 The procedure enter(name, type, offset) creates a symbol-table entry for name, gives its
type type and relative address offset in its data area.

 Attribute type represents a type expression constructed from the basic types integer and
real by applying the type constructors pointer and array. If type expressions are
represented by graphs, then attribute type might be a pointer to the node representing a
type expression.

 The width of an array is obtained by multiplying the width of each element by the
number of elements in the array. The width of each pointer is assumed to be 4.

Computing the types and relative addresses of declared names

P  D { offset : = 0 }

D D ; D

D id : T { enter(id.name, T.type, offset);
offset : = offset + T.width }

T integer { T.type : = integer;
T.width : = 4 }

T real { T.type : = real;
T.width : = 8 }

T array [num] of T1 { T.type : = array(num.val, T1.type);
T.width : = num.val X T1.width }

T ↑ T1 { T.type : = pointer (T1.type);
T.width : = 4 }

http://csetube.weebly.com/
http://csetube.weebly.com/

Keeping Track of Scope Information:

When a nested procedure is seen, processing of declarations in the enclosing procedure is
temporarily suspended. This approach will be illustrated by adding semantic rules to the
following language:

P D

D D ; D | id : T | proc id ; D ; S

One possible implementation of a symbol table is a linked list of entries for names.

A new symbol table is created when a procedure declaration D  proc id D1;S is seen,
and entries for the declarations in D1 are created in the new table. The new table points back to
the symbol table of the enclosing procedure; the name represented by id itself is local to the
enclosing procedure. The only change from the treatment of variable declarations is that the
procedure enter is told which symbol table to make an entry in.

For example, consider the symbol tables for procedures readarray, exchange, and
quicksort pointing back to that for the containing procedure sort, consisting of the entire
program. Since partition is declared within quicksort, its table points to that of quicksort.

Symbol tables for nested procedures

sort

to readarray
to exchange

readarray exchange quicksort

partition

header header

i

header

a

x

readarray

exchange
quicksort

nil header

i k

v

partition

header

j

http://csetube.weebly.com/
http://csetube.weebly.com/

The semantic rules are defined in terms of the following operations:

1. mktable(previous) creates a new symbol table and returns a pointer to the new table. The
argument previous points to a previously created symbol table, presumably that for the
enclosing procedure.

2. enter(table, name, type, offset) creates a new entry for name name in the symbol table pointed
to by table. Again, enter places type type and relative address offset in fields within the entry.

3. addwidth(table, width) records the cumulative width of all the entries in table in the header
associated with this symbol table.

4. enterproc(table, name, newtable) creates a new entry for procedure name in the symbol table
pointed to by table. The argument newtable points to the symbol table for this procedure
name.

Syntax directed translation scheme for nested procedures

PM D { addwidth (top(tblptr) , top (offset));
pop (tblptr); pop (offset) }

M ɛ { t : = mktable (nil);
push (t,tblptr); push (0,offset) }

D D1 ; D2

D proc id ; N D1 ; S { t : = top (tblptr);
addwidth (t, top (offset));
pop (tblptr); pop (offset);
enterproc (top (tblptr), id.name, t) }

D id : T { enter (top (tblptr), id.name, T.type, top (offset));
top (offset) := top (offset) + T.width }

N ɛ { t := mktable (top (tblptr));
push (t, tblptr); push (0,offset) }

 The stack tblptr is used to contain pointers to the tables for sort, quicksort, and partition
when the declarations in partition are considered.

 The top element of stack offset is the next available relative address for a local of the
current procedure.

 All semantic actions in the subtrees for B and C in

A BC {actionA}

are done before actionA at the end of the production occurs. Hence, the action associated
with the marker M is the first to be done.

http://csetube.weebly.com/
http://csetube.weebly.com/

 The action for nonterminal M initializes stack tblptr with a symbol table for the
outermost scope, created by operation mktable(nil). The action also pushes relative
address 0 onto stack offset.

 Similarly, the nonterminal N uses the operation mktable(top(tblptr)) to create a new
symbol table. The argument top(tblptr) gives the enclosing scope for the new table.

 For each variable declaration id: T, an entry is created for id in the current symbol table.
The top of stack offset is incremented by T.width.

 When the action on the right side of D proc id; ND1; S occurs, the width of all
declarations generated by D1 is on the top of stack offset; it is recorded using addwidth.
Stacks tblptr and offset are then popped.
At this point, the name of the enclosed procedure is entered into the symbol table of its
enclosing procedure.

ASSIGNMENT STATEMENTS

Suppose that the context in which an assignment appears is given by the following grammar.

PM D

M ɛ

D D ; D | id : T | proc id ; N D ; S

N ɛ

Nonterminal P becomes the new start symbol when these productions are added to those in the
translation scheme shown below.

Translation scheme to produce three-address code for assignments

S id : = E { p : = lookup (id.name);
if p ≠ nil then
emit(p ‘ : =’ E.place)
else error }

E E1 + E2 { E.place : = newtemp;
emit(E.place ‘: =’ E1.place ‘ + ‘ E2.place) }

E E1 * E2 { E.place : = newtemp;
emit(E.place ‘: =’ E1.place ‘ * ‘ E2.place) }

E - E1 { E.place : = newtemp;
emit (E.place ‘: =’ ‘uminus’ E1.place) }

E (E1) { E.place : = E1.place }

http://csetube.weebly.com/
http://csetube.weebly.com/

E id { p : = lookup (id.name);

if p ≠ nil then
E.place : = p

else error }

Reusing Temporary Names

 The temporaries used to hold intermediate values in expression calculations tend to
clutter up the symbol table, and space has to be allocated to hold their values.

 Temporaries can be reused by changing newtemp. The code generated by the rules for E
 E1 + E2 has the general form:

evaluate E1 into t1

evaluate E2 into t2

t : = t1 + t2

 The lifetimes of these temporaries are nested like matching pairs of balanced parentheses.

 Keep a count c , initialized to zero. Whenever a temporary name is used as an operand,
decrement c by 1. Whenever a new temporary name is generated, use $c and increase c
by 1.

 For example, consider the assignment x := a * b + c * d – e * f

Three-address code with stack temporaries

statement value of c

0
$0 := a * b 1
$1 := c * d 2
$0 := $0 + $1 1
$1 := e * f 2
$0 := $0 - $1 1
x := $0 0

Addressing Array Elements:

Elements of an array can be accessed quickly if the elements are stored in a block of
consecutive locations. If the width of each array element is w, then the ith element of array A
begins in location

base + (i – low) x w

where low is the lower bound on the subscript and base is the relative address of the storage
allocated for the array. That is, base is the relative address of A[low].

http://csetube.weebly.com/
http://csetube.weebly.com/

The expression can be partially evaluated at compile time if it is rewritten as

i x w + (base – low x w)

The subexpression c = base – low x w can be evaluated when the declaration of the array is seen.
We assume that c is saved in the symbol table entry for A , so the relative address of A[i] is
obtained by simply adding i x w to c.

Address calculation of multi-dimensional arrays:

A two-dimensional array is stored in of the two forms :

 Row-major (row-by-row)

 Column-major (column-by-column)

Layouts for a 2 x 3 array

first column
first row

second column

second row
third column

(a) ROW-MAJOR (b) COLUMN-MAJOR

In the case of row-major form, the relative address of A[i1 , i2] can be calculated by the formula

base + ((i1 – low1) x n2 + i2 – low2) x w

where, low1 and low2 are the lower bounds on the values of i1 and i2 and n2 is the number of
values that i2 can take. That is, if high2 is the upper bound on the value of i2, then n2 = high2 –
low2 + 1.

Assuming that i1 and i2 are the only values that are known at compile time, we can rewrite the
above expression as

((i1 x n2) + i2) x w + (base – ((low1 x n2) + low2) x w)

Generalized formula:

The expression generalizes to the following expression for the relative address of A[i1,i2,…,ik]

((. . . ((i1n2 + i2) n3 + i3) . . .) nk + ik) x w + base – ((. . .((low1n2 + low2)n3 + low3) . . .)
nk + lowk) x w

for all j, nj = highj – lowj + 1

A[1,1]

A[1,2]

A[1,3]

A[2,1]

A[2,2]

A[2,3]

A [1,1]

A [2,1]

A [1,2]

A [2,2]

A [1,3]

A [2,3]

http://csetube.weebly.com/
http://csetube.weebly.com/

The Translation Scheme for Addressing Array Elements :

Semantic actions will be added to the grammar :

(1) S  L : = E
(2) E  E + E
(3) E  (E)
(4) E  L
(5) L  Elist]
(6) L  id
(7) Elist Elist , E
(8) Elist id [E

We generate a normal assignment if L is a simple name, and an indexed assignment into the
location denoted by L otherwise :

(1) S L : = E { if L.offset = null then / * L is a simple id */
emit (L.place ‘: =’ E.place) ;

else
emit (L.place ‘ [‘ L.offset ‘]’ ‘: =’ E.place) }

(2) E E1 + E2 { E.place : = newtemp;
emit (E.place ‘: =’ E1.place ‘ +’ E2.place) }

(3) E (E1) { E.place : = E1.place }

When an array reference L is reduced to E , we want the r-value of L. Therefore we use indexing
to obtain the contents of the location L.place [L.offset] :

(4) E L { if L.offset = null then /* L is a simple id* /
E.place : = L.place

else begin
E.place : = newtemp;
emit (E.place ‘: =’ L.place ‘ [‘ L.offset ‘]’)

end }

(5) L Elist] { L.place : = newtemp;
L.offset : = newtemp;
emit (L.place ‘: =’ c(Elist.array));
emit (L.offset ‘: =’ Elist.place ‘*’ width (Elist.array)) }

(6) L id { L.place := id.place;
L.offset := null }

(7) Elist Elist1 , E { t := newtemp;
m : = Elist1.ndim + 1;
emit (t ‘: =’ Elist1.place ‘*’ limit (Elist1.array,m));
emit (t ‘: =’ t ‘+’ E.place);
Elist.array : = Elist1.array;

http://csetube.weebly.com/
http://csetube.weebly.com/

Elist.place : = t;
Elist.ndim : = m }

(8) Elist id [E { Elist.array : = id.place;

Elist.place : = E.place;
Elist.ndim : = 1 }

Type conversion within Assignments :

Consider the grammar for assignment statements as above, but suppose there are two
types – real and integer , with integers converted to reals when necessary. We have another
attribute E.type, whose value is either real or integer. The semantic rule for E.type associated
with the production E E + E is :

E E + E { E.type : =
if E1.type = integer and

E2.type = integer then integer
else real }

The entire semantic rule for E  E + E and most of the other productions must be
modified to generate, when necessary, three-address statements of the form x : = inttoreal y,
whose effect is to convert integer y to a real of equal value, called x.

Semantic action for E E1 + E2

E.place := newtemp;
if E1.type = integer and E2.type = integer then begin

emit(E.place ‘: =’ E1.place ‘int +’ E2.place);
E.type : = integer

end
else if E1.type = real and E2.type = real then begin

emit(E.place ‘: =’ E1.place ‘real +’ E2.place);
E.type : = real

end
else if E1.type = integer and E2.type = real then begin

u : = newtemp;
emit(u ‘: =’ ‘inttoreal’ E1.place);
emit(E.place ‘: =’ u ‘ real +’ E2.place);
E.type : = real

end
else if E1.type = real and E2.type =integer then begin

u : = newtemp;
emit(u ‘: =’ ‘inttoreal’ E2.place);
emit(E.place ‘: =’ E1.place ‘ real +’ u);
E.type : = real

end
else

E.type : = type_error;

http://csetube.weebly.com/
http://csetube.weebly.com/

For example, for the input x : = y + i * j
assuming x and y have type real, and i and j have type integer, the output would look like

t1 : = i int* j
t3 : = inttoreal t1

t2 : = y real+ t3

x : = t2

BOOLEAN EXPRESSIONS

Boolean expressions have two primary purposes. They are used to compute logical
values, but more often they are used as conditional expressions in statements that alter the flow
of control, such as if-then-else, or while-do statements.

Boolean expressions are composed of the boolean operators (and, or, and not) applied
to elements that are boolean variables or relational expressions. Relational expressions are of the
form E1 relop E2, where E1 and E2 are arithmetic expressions.

Here we consider boolean expressions generated by the following grammar :

E E or E | E and E | not E | (E) | id relop id | true | false

Methods of Translating Boolean Expressions:

There are two principal methods of representing the value of a boolean expression. They are :

 To encode true and false numerically and to evaluate a boolean expression analogously
to an arithmetic expression. Often, 1 is used to denote true and 0 to denote false.

 To implement boolean expressions by flow of control, that is, representing the value of a
boolean expression by a position reached in a program. This method is particularly
convenient in implementing the boolean expressions in flow-of-control statements, such
as the if-then and while-do statements.

Numerical Representation

Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from
left to right, in a manner similar to arithmetic expressions.

For example :

 The translation for
a or b and not c

is the three-address sequence
t1 : = not c
t2 : = b and t1

t3 : = a or t2

 A relational expression such as a < b is equivalent to the conditional statement
if a < b then 1 else 0

http://csetube.weebly.com/
http://csetube.weebly.com/

which can be translated into the three-address code sequence (again, we arbitrarily start
statement numbers at 100) :

100 : if a < b goto 103
101 : t : = 0
102 : goto 104
103 : t : = 1
104 :

Translation scheme using a numerical representation for booleans

E E1 or E2 { E.place : = newtemp;
emit(E.place ‘: =’ E1.place ‘or’ E2.place) }

E E1 and E2 { E.place : = newtemp;
emit(E.place ‘: =’ E1.place ‘and’ E2.place) }

E not E1 { E.place : = newtemp;
emit(E.place ‘: =’ ‘not’ E1.place) }

E (E1) { E.place : = E1.place }
E id1 relop id2 { E.place : = newtemp;

emit(‘if’ id1.place relop.op id2.place ‘goto’ nextstat + 3);
emit(E.place ‘: =’ ‘0’);
emit(‘goto’ nextstat +2);
emit(E.place ‘: =’ ‘1’) }

E true { E.place : = newtemp;
emit(E.place ‘: =’ ‘1’) }

Efalse { E.place : = newtemp;
emit(E.place ‘: =’ ‘0’) }

Short-Circuit Code:

We can also translate a boolean expression into three-address code without generating
code for any of the boolean operators and without having the code necessarily evaluate the entire
expression. This style of evaluation is sometimes called “short-circuit” or “jumping” code. It is
possible to evaluate boolean expressions without generating code for the boolean operators and,
or, and not if we represent the value of an expression by a position in the code sequence.

Translation of a < b or c < d and e < f

100 : if a < b goto 103 107 : t2 : = 1

101 : t1 : = 0 108 : if e < f goto 111

102 : goto 104 109 : t3 : = 0

103 : t1 : = 1 110 : goto 112

104 : if c < d goto 107 111 : t3 : = 1

105 : t2 : = 0 112 : t4 : = t2 and t3

106 : goto 108 113 : t5 : = t1 or t4

http://csetube.weebly.com/
http://csetube.weebly.com/

Flow-of-Control Statements

We now consider the translation of boolean expressions into three-address code in the
context of if-then, if-then-else, and while-do statements such as those generated by the following
grammar:

S if E then S1

| if E then S1 else S2

| while E do S1

In each of these productions, E is the Boolean expression to be translated. In the translation, we
assume that a three-address statement can be symbolically labeled, and that the function
newlabel returns a new symbolic label each time it is called.

 E.true is the label to which control flows if E is true, and E.false is the label to which
control flows if E is false.

 The semantic rules for translating a flow-of-control statement S allow control to flow
from the translation S.code to the three-address instruction immediately following
S.code.

 S.next is a label that is attached to the first three-address instruction to be executed after
the code for S.

Code for if-then , if-then-else, and while-do statements

to E.true

to E.false

to E.true E.true:

E.true : to E.false

E.false:

E.false : . . .

S.next: . . .

(a) if-then (b) if-then-else

S.begin: to E.true

to E.false
E.true:

E.false: . . .

(c) while-do

E.code

S1.code

E.code

S1.code

goto S.next

S2.code

E.code

S1.code

goto S.begin

http://csetube.weebly.com/
http://csetube.weebly.com/

Syntax-directed definition for flow-of-control statements

PRODUCTION SEMANTIC RULES

S if E then S1 E.true : = newlabel;
E.false : = S.next;
S1.next : = S.next;
S.code : = E.code || gen(E.true ‘:’) || S1.code

S if E then S1 else S2 E.true : = newlabel;
E.false : = newlabel;
S1.next : = S.next;
S2.next : = S.next;
S.code : = E.code || gen(E.true ‘:’) || S1.code ||

gen(‘goto’ S.next) ||
gen(E.false ‘:’) || S2.code

S while E do S1 S.begin : = newlabel;
E.true : = newlabel;
E.false : = S.next;
S1.next : = S.begin;
S.code : = gen(S.begin ‘:’)|| E.code ||

gen(E.true ‘:’) || S1.code ||
gen(‘goto’ S.begin)

Control-Flow Translation of Boolean Expressions:

Syntax-directed definition to produce three-address code for booleans

PRODUCTION SEMANTIC RULES

E E1 or E2 E1.true : = E.true;
E1.false : = newlabel;
E2.true : = E.true;
E2.false : = E.false;
E.code : = E1.code || gen(E1.false ‘:’) || E2.code

E E1 and E2 E.true : = newlabel;
E1.false : = E.false;
E2.true : = E.true;
E2.false : = E.false;
E.code : = E1.code || gen(E1.true ‘:’) || E2.code

E not E1 E1.true : = E.false;
E1.false : = E.true;
E.code : = E1.code

E (E1) E1.true : = E.true;

http://csetube.weebly.com/
http://csetube.weebly.com/

E1.false : = E.false;
E.code : = E1.code

E id1 relop id2 E.code : = gen(‘if’ id1.place relop.op id2.place
‘goto’ E.true) || gen(‘goto’ E.false)

E true E.code : = gen(‘goto’ E.true)

E false E.code : = gen(‘goto’ E.false)

CASE STATEMENTS

The “switch” or “case” statement is available in a variety of languages. The switch-statement
syntax is as shown below :

Switch-statement syntax

switch expression
begin

case value : statement
case value : statement

. . .
case value : statement
default : statement

end

There is a selector expression, which is to be evaluated, followed by n constant values
that the expression might take, including a default “value” which always matches the expression
if no other value does. The intended translation of a switch is code to:

1. Evaluate the expression.
2. Find which value in the list of cases is the same as the value of the expression.
3. Execute the statement associated with the value found.

Step (2) can be implemented in one of several ways :

 By a sequence of conditional goto statements, if the number of cases is small.
 By creating a table of pairs, with each pair consisting of a value and a label for the code

of the corresponding statement. Compiler generates a loop to compare the value of the
expression with each value in the table. If no match is found, the default (last) entry is
sure to match.

 If the number of cases s large, it is efficient to construct a hash table.
 There is a common special case in which an efficient implementation of the n-way branch

exists. If the values all lie in some small range, say imin to imax, and the number of
different values is a reasonable fraction of imax - imin, then we can construct an array of
labels, with the label of the statement for value j in the entry of the table with offset j -
imin and the label for the default in entries not filled otherwise. To perform switch,

http://csetube.weebly.com/
http://csetube.weebly.com/

evaluate the expression to obtain the value of j , check the value is within range and
transfer to the table entry at offset j-imin .

Syntax-Directed Translation of Case Statements:

Consider the following switch statement:

switch E
begin

case V1 : S1

case V2 : S2

. . .
case Vn-1 : Sn-1

default : Sn

end

This case statement is translated into intermediate code that has the following form :

Translation of a case statement

code to evaluate E into t
goto test

L1 : code for S1

goto next
L2 : code for S2

goto next
. . .

Ln-1 : code for Sn-1

goto next
Ln : code for Sn

goto next
test : if t = V1 goto L1

if t = V2 goto L2

. . .
if t = Vn-1 goto Ln-1

goto Ln

next :

To translate into above form :

 When keyword switch is seen, two new labels test and next, and a new temporary t are
generated.

 As expression E is parsed, the code to evaluate E into t is generated. After processing E ,
the jump goto test is generated.

 As each case keyword occurs, a new label Li is created and entered into the symbol table.
A pointer to this symbol-table entry and the value Vi of case constant are placed on a
stack (used only to store cases).

http://csetube.weebly.com/
http://csetube.weebly.com/

 Each statement case Vi : Si is processed by emitting the newly created label Li, followed
by the code for Si , followed by the jump goto next.

 Then when the keyword end terminating the body of the switch is found, the code can be
generated for the n-way branch. Reading the pointer-value pairs on the case stack from
the bottom to the top, we can generate a sequence of three-address statements of the form

case V1 L1

case V2 L2

. . .
case Vn-1 Ln-1

case t Ln

label next

where t is the name holding the value of the selector expression E, and Ln is the label for
the default statement.

BACKPATCHING

The easiest way to implement the syntax-directed definitions for boolean expressions is
to use two passes. First, construct a syntax tree for the input, and then walk the tree in depth-first
order, computing the translations. The main problem with generating code for boolean
expressions and flow-of-control statements in a single pass is that during one single pass we may
not know the labels that control must go to at the time the jump statements are generated. Hence,
a series of branching statements with the targets of the jumps left unspecified is generated. Each
statement will be put on a list of goto statements whose labels will be filled in when the proper
label can be determined. We call this subsequent filling in of labels backpatching.

To manipulate lists of labels, we use three functions :

1. makelist(i) creates a new list containing only i, an index into the array of quadruples;
makelist returns a pointer to the list it has made.

2. merge(p1,p2) concatenates the lists pointed to by p1 and p2, and returns a pointer to the
concatenated list.

3. backpatch(p,i) inserts i as the target label for each of the statements on the list pointed to
by p.

Boolean Expressions:

We now construct a translation scheme suitable for producing quadruples for boolean
expressions during bottom-up parsing. The grammar we use is the following:

(1) E E1 or M E2

(2) | E1 and M E2

(3) | not E1

(4) | (E1)
(5) | id1 relop id2

(6) | true
(7) | false
(8) M ɛ

http://csetube.weebly.com/
http://csetube.weebly.com/

Synthesized attributes truelist and falselist of nonterminal E are used to generate jumping code
for boolean expressions. Incomplete jumps with unfilled labels are placed on lists pointed to by
E.truelist and E.falselist.

Consider production E E1 and M E2. If E1 is false, then E is also false, so the statements on
E1.falselist become part of E.falselist. If E1 is true, then we must next test E2, so the target for the
statements E1.truelist must be the beginning of the code generated for E2. This target is obtained
using marker nonterminal M.

Attribute M.quad records the number of the first statement of E2.code. With the production M
ɛ we associate the semantic action

{ M.quad : = nextquad }

The variable nextquad holds the index of the next quadruple to follow. This value will be
backpatched onto the E1.truelist when we have seen the remainder of the production E E1 and
M E2. The translation scheme is as follows:

(1) E E1 or M E2 { backpatch (E1.falselist, M.quad);
E.truelist : = merge(E1.truelist, E2.truelist);
E.falselist : = E2.falselist }

(2) E E1 and M E2 { backpatch (E1.truelist, M.quad);
E.truelist : = E2.truelist;
E.falselist : = merge(E1.falselist, E2.falselist) }

(3) E not E1 { E.truelist : = E1.falselist;
E.falselist : = E1.truelist; }

(4) E (E1) { E.truelist : = E1.truelist;
E.falselist : = E1.falselist; }

(5) E id1 relop id2 { E.truelist : = makelist (nextquad);
E.falselist : = makelist(nextquad + 1);
emit(‘if’ id1.place relop.op id2.place ‘goto_’)
emit(‘goto_’) }

(6) E true { E.truelist : = makelist(nextquad);
emit(‘goto_’) }

(7) E false { E.falselist : = makelist(nextquad);
emit(‘goto_’) }

(8) M ɛ { M.quad : = nextquad }

http://csetube.weebly.com/
http://csetube.weebly.com/

Flow-of-Control Statements:

A translation scheme is developed for statements generated by the following grammar :

(1) S if E then S
(2) | if E then S else S
(3) | while E do S
(4) | begin L end
(5) | A
(6) L L ; S
(7) | S

Here S denotes a statement, L a statement list, A an assignment statement, and E a boolean
expression. We make the tacit assumption that the code that follows a given statement in
execution also follows it physically in the quadruple array. Else, an explicit jump must be
provided.

Scheme to implement the Translation:

The nonterminal E has two attributes E.truelist and E.falselist. L and S also need a list of
unfilled quadruples that must eventually be completed by backpatching. These lists are pointed
to by the attributes L..nextlist and S.nextlist. S.nextlist is a pointer to a list of all conditional and
unconditional jumps to the quadruple following the statement S in execution order, and L.nextlist
is defined similarly.

The semantic rules for the revised grammar are as follows:

(1) S if E then M1 S1 N else M2 S2

{ backpatch (E.truelist, M1.quad);
backpatch (E.falselist, M2.quad);
S.nextlist : = merge (S1.nextlist, merge (N.nextlist, S2.nextlist)) }

We backpatch the jumps when E is true to the quadruple M1.quad, which is the beginning of the
code for S1. Similarly, we backpatch jumps when E is false to go to the beginning of the code for
S2. The list S.nextlist includes all jumps out of S1 and S2, as well as the jump generated by N.

(2) N ɛ { N.nextlist : = makelist(nextquad);
emit(‘goto _’) }

(3) M ɛ { M.quad : = nextquad }

(4) S if E then M S1 { backpatch(E.truelist, M.quad);
S.nextlist : = merge(E.falselist, S1.nextlist) }

(5) S while M1 E do M2 S1 { backpatch(S1.nextlist, M1.quad);
backpatch(E.truelist, M2.quad);
S.nextlist : = E.falselist
emit(‘goto’ M1.quad) }

(6) S begin L end { S.nextlist : = L.nextlist }

http://csetube.weebly.com/
http://csetube.weebly.com/

(7) S A { S.nextlist : = nil }

The assignment S.nextlist : = nil initializes S.nextlist to an empty list.

(8) L L1 ; M S { backpatch(L1.nextlist, M.quad);
L.nextlist : = S.nextlist }

The statement following L1 in order of execution is the beginning of S. Thus the L1.nextlist list is
backpatched to the beginning of the code for S, which is given by M.quad.

(9) L S { L.nextlist : = S.nextlist }

PROCEDURE CALLS

The procedure is such an important and frequently used programming construct that it is
imperative for a compiler to generate good code for procedure calls and returns. The run-time
routines that handle procedure argument passing, calls and returns are part of the run-time
support package.

Let us consider a grammar for a simple procedure call statement

(1) S  call id (Elist)
(2) Elist Elist , E
(3) Elist E

Calling Sequences:

The translation for a call includes a calling sequence, a sequence of actions taken on entry
to and exit from each procedure. The falling are the actions that take place in a calling sequence :

 When a procedure call occurs, space must be allocated for the activation record of the
called procedure.

 The arguments of the called procedure must be evaluated and made available to the called
procedure in a known place.

 Environment pointers must be established to enable the called procedure to access data in
enclosing blocks.

 The state of the calling procedure must be saved so it can resume execution after the call.

 Also saved in a known place is the return address, the location to which the called
routine must transfer after it is finished.

 Finally a jump to the beginning of the code for the called procedure must be generated.

For example, consider the following syntax-directed translation

(1) S call id (Elist)
{ for each item p on queue do

emit (‘ param’ p);

http://csetube.weebly.com/
http://csetube.weebly.com/

emit (‘call’ id.place) }
(2) Elist Elist , E

{ append E.place to the end of queue }

(3) Elist E
{ initialize queue to contain only E.place }

 Here, the code for S is the code for Elist, which evaluates the arguments, followed by a
param p statement for each argument, followed by a call statement.

 queue is emptied and then gets a single pointer to the symbol table location for the name
that denotes the value of E.

http://csetube.weebly.com/
http://csetube.weebly.com/

Programming in JAVA

Lecture on
“JAVA Inheritance”

Prof. Mithun Roy

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 1

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 2

Inheritance in Java

Inheritance in Java is a mechanism in which one object acquires all the
properties and behaviours of a parent object. It is an important part
of OOPs (Object Oriented programming system).

The idea behind inheritance in Java is that you can create new classes that are
built upon existing classes. When you inherit from an existing class, you can reuse
methods and fields of the parent class. Moreover, you can add new methods and
fields in your current class also.

Inheritance represents the IS-A relationship which is also known as a parent-
child relationship.

Why use inheritance in java
•For Method Overriding (so runtime polymorphism can be achieved).
•For Code Reusability.

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/method-overriding-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 3

Terms used in Inheritance

•Class: A class is a group of objects which have common properties. It is a template
or blueprint from which objects are created.

•Sub Class/Child Class: Subclass is a class which inherits the other class. It is also
called a derived class, extended class, or child class.

•Super Class/Parent Class: Superclass is the class from where a subclass inherits
the features. It is also called a base class or a parent class.

•Reusability: As the name specifies, reusability is a mechanism which facilitates
you to reuse the fields and methods of the existing class when you create a new
class. You can use the same fields and methods already defined in the previous
class.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 4

The syntax of Java Inheritance

1.class Subclass-name extends Superclass-name
2.{
3. //methods and fields
4.}

The extends keyword indicates that you are making a new class that derives
from an existing class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called a parent or
superclass, and the new class is called child or subclass.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 5

Java Inheritance Example

As displayed in the above figure, Programmer is the subclass and Employee is the
superclass. The relationship between the two classes is Programmer IS-A
Employee. It means that Programmer is a type of Employee.

1.class Employee{

2. float salary=40000;

3.}

4.class Programmer extends Employee{

5. int bonus=10000;

6. public static void main(String args[]){

7. Programmer p=new Programmer();

8. System.out.println("Programmer salary is:"+p.salary);

9. System.out.println("Bonus of Programmer is:"+p.bonus);

10.}

11.}

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 6

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single, multilevel and
hierarchical.
In java programming, multiple and hybrid inheritance is supported through interface only.
We will learn about interfaces later.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 7

Single Inheritance Example

When a class inherits another class, it is known as a single inheritance. In the
example given below, Dog class inherits the Animal class, so there is the single
inheritance.

1.class Animal{

2.void eat(){System.out.println("eating...");}

3.}

4.class Dog extends Animal{

5.void bark(){System.out.println("barking...");}

6.}

7.class TestInheritance{

8.public static void main(String args[]){

9.Dog d=new Dog();

10.d.bark();

11.d.eat();

12.}}

Output:

barking...
eating...

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 8

Multilevel Inheritance Example

When there is a chain of inheritance, it is known as multilevel inheritance. As you can see
in the example given below, BabyDog class inherits the Dog class which again inherits the
Animal class, so there is a multilevel inheritance.

Output:

weeping...
barking...
eating...

1.class Animal{

2.void eat(){System.out.println("eating...");}

3.}

4.class Dog extends Animal{

5.void bark(){System.out.println("barking...");}

6.}

7.class BabyDog extends Dog{

8.void weep(){System.out.println("weeping...");}

9.}

10.class TestInheritance2{

11.public static void main(String args[]){

12.BabyDog d=new BabyDog();

13.d.weep();

14.d.bark();

15.d.eat();

16.}}

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 9

Hierarchical Inheritance Example

When two or more classes inherits a single class, it is known as hierarchical inheritance. In
the example given below, Dog and Cat classes inherits the Animal class, so there is
hierarchical inheritance.

1.class Animal{

2.void eat(){System.out.println("eating...");}

3.}

4.class Dog extends Animal{

5.void bark(){System.out.println("barking...");}

6.}

7.class Cat extends Animal{

8.void meow(){System.out.println("meowing...");}

9.}

10.class TestInheritance3{

11.public static void main(String args[]){

12.Cat c=new Cat();

13.c.meow();

14.c.eat();

15.//c.bark();//C.T.Error

16.}}

Output:

meowing...
eating...

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 10

Q) Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not supported in java.
Consider a scenario where A, B, and C are three classes. The C class inherits A and B classes. If A and
B classes have the same method and you call it from child class object, there will be ambiguity to call
the method of A or B class.
Since compile-time errors are better than runtime errors, Java renders compile-time error if you
inherit 2 classes. So whether you have same method or different, there will be compile time error.

1.class A{

2.void msg(){System.out.println("Hello");}

3.}

4.class B{

5.void msg(){System.out.println("Welcome");}

6.}

7.class C extends A,B{//suppose if it were

8.

9. public static void main(String args[]){

10. C obj=new C();

11. obj.msg();//Now which msg() method would be invoked?

12.}

13.}

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 11

Super Keyword in Java

The super keyword in Java is a reference variable which is used to refer immediate
parent class object.

Whenever you create the instance of subclass, an instance of parent class is created
implicitly which is referred by super reference variable.

Usage of Java super Keyword

1.super can be used to refer immediate parent class instance variable.
2.super can be used to invoke immediate parent class method.
3.super() can be used to invoke immediate parent class constructor.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 12

1.class Animal{

2.String color="white";

3.}

4.class Dog extends Animal{

5.String color="black";

6.void printColor(){

7.System.out.println(color);//prints color of Dog class

8.System.out.println(super.color);//prints color of Animal cl

ass

9.}

10.}

11.class TestSuper1{

12.public static void main(String args[]){

13.Dog d=new Dog();

14.d.printColor();

15.}}

1) super is used to refer immediate parent class instance variable.

We can use super keyword to access the data member or field of parent class. It is used if
parent class and child class have same fields.

In the above example, Animal
and Dog both classes have a
common property color. If we
print color property, it will print
the color of current class by
default. To access the parent
property, we need to use super
keyword.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 13

2) super can be used to invoke parent class method

The super keyword can also be used to invoke parent class method. It should be used if
subclass contains the same method as parent class. In other words, it is used if method is
overridden.

1.class Animal{

2.void eat(){System.out.println("eating...");}

3.}

4.class Dog extends Animal{

5.void eat(){System.out.println("eating bread...");}

6.void bark(){System.out.println("barking...");}

7.void work(){

8.super.eat();

9.bark();

10.}

11.}

12.class TestSuper2{

13.public static void main(String args[]){

14.Dog d=new Dog();

15.d.work();

16.}}

In the above example Animal and Dog
both classes have eat() method if we call
eat() method from Dog class, it will call
the eat() method of Dog class by default
because priority is given to local.
To call the parent class method, we need
to use super keyword.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 14

3) super is used to invoke parent class constructor.

The super keyword can also be used to invoke the parent class constructor. Let's see a
simple example:

1.class Animal{

2.Animal(){System.out.println("animal is created");}

3.}

4.class Dog extends Animal{

5.Dog(){

6.super();

7.System.out.println("dog is created");

8.}

9.}

10.class TestSuper3{

11.public static void main(String args[]){

12.Dog d=new Dog();

13.}}

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 15

As we know well that default constructor is provided by compiler automatically if there is
no constructor. But, it also adds super() as the first statement.

Another example of super keyword where super() is provided by the compiler implicitly.

1.class Animal{

2.Animal(){System.out.println("animal is created");}

3.}

4.class Dog extends Animal{

5.Dog(){

6.System.out.println("dog is created");

7.}

8.}

9.class TestSuper4{

10.public static void main(String args[]){

11.Dog d=new Dog();

12.}}

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 16

Aggregation in Java

If a class have an entity reference, it is known as Aggregation. Aggregation represents
HAS-A relationship.

Consider a situation, Employee object contains many information such as id, name,
emailId etc. It contains one more object named address, which contains its own
information such as city, state, country, zipcode etc. as given below.

1.class Employee{

2.int id;

3.String name;

4.Address address;//Address is a class

5....

6.}

In such case, Employee has an entity reference address, so relationship is Employee
HAS-A address.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 17

Why use Aggregation?
For Code Reusability.

Simple Example of Aggregation

In this example, we have created the reference of
Operation class in the Circle class.

1.class Operation{

2. int square(int n){

3. return n*n;

4. }

5.}

6.class Circle{

7. Operation op;//aggregation

8. double pi=3.14;

9.

10. double area(int radius){

11. op=new Operation();

12. int rsquare=op.square(radius);//code reusabil

ity (i.e. delegates the method call).

13. return pi*rsquare;

14. }

15.

16. public static void main(String args[]){

17. Circle c=new Circle();

18. double result=c.area(5);

19. System.out.println(result);

20. }

21.}

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 18

When use Aggregation?

Code reuse is also best achieved by aggregation when there is no is-a
relationship.

Inheritance should be used only if the relationship is-a is maintained throughout
the lifetime of the objects involved; otherwise, aggregation is the best choice.

Understanding meaningful example of Aggregation

In this example, Employee has an object of Address, address object contains its own
information such as city, state, country etc. In such case relationship is Employee
HAS-A address.

16-06-2021 Compiled By Prof. Mithun Roy, Department of CSE, SIT 19

��������� ��	
���
���
������
����	�
����
��

��
��
�
������������
������
���

���� �	��
!"!	�"����#�$�$	�	%����
&�������	�'(����	
�������	
�����"�
�� ���)*+,-./+)012)34567+)38./,+)398/-+:-);<-9:)=>+77?<5=@8/A)B768/4-9?CDEFGHEIEJKLMNOKEPQMKREIEJKLMNOKESTUDVERQWXKREMYKEZOQ[WK\EQ]E]̂_̀ _̂aEbE\̂_̂\N\EMQMbWEcK̂aYMERN[RKMEQ]EK̀aKREMYbMERZb_REbWWEMYKEXKOM̂LKRde_QMYKOELQ\\Q_EaObZYEZOQ[WK\ÊREMQE]̂_̀EMYKERYQOMKRMEZbMYREMQEbWWEOKbLYb[WKEXKOM̂LKRE]OQ\EbEâXK_ERQNOLKdfKEYbXKEbWOKb̀gERKK_EYQcEMQERQWXKEMŶREZOQ[WK\Ê_EMYKELbRKEcYKOKEbWWEMYKEK̀aKREYbXKEMYKEhijkEcK̂aYMEl̂_cŶLYELbRKEMYKERYQOMKRMEZbMYÊRER̂\ZWgEMYKE\̂_̂\N\EmnjokpEQ]EK̀aKRqENR̂_aErsDdEPQcEcKEĉWWEKtb\̂_KMcQEbWaQÔMY\RE]QOE]̂_̀ _̂aEhumvwkxhynpzkxh{yp|kh|x}i|{hE]QOÈ̂OKLMK̀EaObZYREcYK_EMYKEK̀aKREYbXKE~u��kpkm|cK̂aYMRE�ErKWW\b_�sQÒEb_̀E�̂��RMOb�REbWaQÔMY\RdEDKXKObWEOKWbMK̀EZOQ[WK\REbOK�D̂_aWKÈKRM̂_bM̂Q_ERYQOMKRMEZbMYE�E]̂_̀EMYKEMOb_RZQRKEaObZYEl̂dKdEOKXKORKEMYKEK̀aK`̂OKLM̂Q_RqEb_̀ENRKER̂_aWKERQNOLKERYQOMKRMEZbMYD̂_aWKEZb̂OERYQOMKRMEZbMYEl̂dKdEbERZKL̂]̂LÈKRM̂_bM̂Q_qE�EbRg\ZMQM̂LbWWgEMŶREZOQ[WK\ELb_E[KRQWXK̀E_QE]bRMKOEMYb_ER̂\ZWgENR̂_aER̂_aWKERQNOLKERYQOMKRMEZbMYEbWaQÔMY\REMQEbWWEMYKXKOM̂LKReWWEZb̂OERYQOMKRMEZbMYRE�EQ_KEMKLY_̂�NKÊREMQENRKER̂_aWKERQNOLKERYQOMKRMEZbMYE]QOEKbLYXKOMKt�E[NMEWbMKOEcKEĉWWERKKEbE\QOKEK]]̂L̂K_MEbWaQÔMY\34567+)38./,+)398/-+:-);<-9;/8�7+?�̂XK_EbÈ̂OKLMK̀EaObZYE������EĉMYE�kuv{|k~xk~vkhE��n����ÈK]̂_KEMYKE}i|{x�kuv{|EQ]EbEZbMYE}EbRsQOEbEâXK_ERQNOLKEXKOMKtEh�E]̂_̀EMYKEjumujnjx�kuv{|x}i|{hEMQEKXKOgEXKOMKtEOKbLYb[WKE]OQ\EhÈK_QMK̀VYKE]̂_bWERQWNM̂Q_EĉWWERbM̂R]gELKOMb̂_ELbXKbMR�VYKEaObZYELb__QMELQ_Mb̂_Eb_gEmkvi|u�kx�kuv{|xz�zwkhElQMYKOĉRKEMYKOKEcQNẀE[KE_Q\̂_̂\N\EZbMYER̂_LKEcKELQNẀER̂\ZWgELQ_M̂_NKEMQE]QWWQcEMYKE_KabM̂XKEcK̂aYMELgLWKZOQ̀NL̂_aEbEZbMYEcK̂aYMEQ]E��qdVYKERQWNM̂Q_ELb__QMEYbXKEb_gE}yhu|u�kx�kuv{|xz�zwkhElR̂_LKEMYKELgLWKELQNẀER̂\ZWgE[KOK\QXK̀EâX̂_aEbEWQcKOEcK̂aYMEZbMYqdVYKERQWNM̂Q_ELb_E[KEbRRN\K̀EMQEYbXKE_QE�KOQEcK̂aYMELgLWKRElR̂_LKEMYKgEcQNẀE_QMEb]]KLMMYKE\̂_̂\N\EXbWNKqdVYKOK]QOKEâXK_EMYKRKELbXKbMR�EcKE�_QcEMYKERYQOMKRMEZbMYRE\NRME[KEiz�zwuzElĉMYE�E���È̂RM̂_LMEXKOM̂LKRqE�E����E�ETEK̀aKRÊ_EKbLYEZbMYd

��������� ��	
���
���
������
����	�
����
��

��
��
�
������������
������
���

���� �	��
!"!	�"����#�$�$	�	%����
&�������	�'(����	
�������	
�����"�
�� ���)*+*,-./0123,-456789:;<=>?9:;@ABC9:;8@BD9;D:EFD8:F?>@B<D8G;:A;9:D89:;FG9:=@DFD<@=:F;:HIJ:K;99:?9CDAB9:LMN:O<D8:EB9P9C9;;@B:QF=P:P<;DF=C9:R:S<9?P;:S@B:9FC8:T9BD9UV:789:@ED<GF?:;@?AD<@=:O<??:8FT9:WXR:Y:ZK[\WN:S@B:F??:W:]:̂V789:;@?AD<@=;:AD<?<_9:D89:C@=C9ED:@S:̀Ràbc̀defeghij:O8<C8:<;:F:D9;D:D@:P9D9BG<=9:O89D89B:>@<=>:D8B@A>8:9P>9Kk\WN:B9PAC9;:D89:P<;DF=C9:D@:W:F=P:<S:;@:AEPFD9:WXQ:F=P:WXRV:78<;:<;:FCC@GE?<;89P:A;<=>:D89:C@=P<D<@=l*116m+no3,p/0123,-456789:q̀ddrejsticRbedaichgur:A;9;:B9?FUFD<@=:D@:S<=P:;<=>?9:;@ABC9:;8@BD9;D:EFD8;:@=:P<B9CD9P:>BFE8;:D8FDGFv:C@=DF<=:j̀aeghẀbẁhaugb̀Rà[V:789:F?>@B<D8G:O<??:F?;@:P9D9CD:<S:D89B9:FB9:F=v:j̀aeghẀbẁhaugbxyxd̀[K;AC8:D8FD:D89B9:<;:=@:;@?AD<@=NVz{||}~�����������������������~|��{�����|{������{�� ¡��¢£���¤�¥��]���{�¦����������{|~§�¤�¥�����̈�������� ¡��¢£���¤�¥��]���{�©���������¥�¢�ª�¤�¢�«���¤�¥��¬������������¤�­��~|�{�®������¤�­����{�������~|��{�����|{������{���������������� ¡�¥����̄�¥�]������������¥�¢���°��������¥�±������|�¦�����¢���²���{|~§�¤�¥�����������¥�¢�ª�¤�¢�«���¤�¥���������¥�¢���¤�¢�«���¤�¥���������¥�±����¤�HF;<CF??v:D89:F?>@B<D8G:O@B³;:F;:S@??@O;́LV:µ=<D<F?<_9:R¶;\:Q¶;\:F=P:;9D:[XR:Y:·:̧:¹K̂NºV:»@@E:¼̂¼½L:D<G9;:D8B@A>8:F??:9P>9;:C89C³<=>:D89:B9?FUFD<@=:C@=P<D<@=:D@:C@GEAD9G<=<GAG:P<;DF=C9;:̧:K¼̂¼½LN:¹K¾N:Y:¹K̂¾N¿V:»@@E:D8B@A>8:F??:9P>9;:C89C³<=>:S@B:=9>FD<T9:O9<>8D:CvC?9;:O8<C8:@CCAB;:<S:F=v:@S:D89B9?FUFD<@=:C@=P<D<@=;:SF<?:̧:¹K¾N

��������� ��	
���
���
������
����	�
����
��

��
��
�
������������
������
���

���� �	��
!"!	�"����#�$�$	�	%����
&�������	�'(����	
�������	
�����"�
�� '��)*+,-./,012+,34,0*+,5+6627/893-:,76;3-10*2,1<,=>?,@,?A,@,AB,C,=>?ABDE30+,0*70,14,0*+,;-7F*,1<,7,GHI,>7/:,0*.<,1<,J/3K/,03,/30,*7L+,7/M,NMN6+<BO,K+,N7/,27J+,5+6627/893-:23-+,+441N1+/0,PM,41-<0,QRSRTRUVWXTTYZ[R\QV]U,̂,>=>?@ABBO,F+-43-21/;,0*+,<72+,1/101761_7013/,>=>?BBO,7/:0*+/,<12F6M,633F1/;,0*-3.;*,+7N*,L+-0+̀,a,V]ZQRSRTRUVWXTZR\bc\,-+67̀1/;,3/6M,0*+,+:;+<,1/,H:deaf,>=>ABBD)*1<,2+0*3:,3/6M,07J+<,=>?,@,AB,012+D,)*1<,F-3N+:.-+,>K10*,7,4+K,<61;*0,23:141N7013/<B,1<,.<+4.6,43-41/:1/;,W\VQVWXTZSXQg[,43-,hij),N*7-0<DklmnopqI1L+/,0*+,43663K1/;,:1-+N0+:,;-7F*r<1/;,L+-0+̀,s,7<,0*+,<3.-N+,><+001/;,10<,:1<07/N+,03,tBO,K+,1/101761_+,766,0*+,30*+-,:1<07/N+<,03,uDvQc\XQVR]Zwx,i:;+<,>asOayB,7/:,>asOazB,-+67̀,.F:701/;,0*+,:1<07/N+<,03,y,7/:,zvQc\XQVR]Z{x,i:;+<,>ayOa|BO,>azOayB,7/:,>azOa}B,-+67̀,.F:701/;,0*+,:1<07/N+<,03,|O,yO,7/:,z,-+<F+N01L+6MD,E30++:;+,>azOayB,41/:<,7,<*3-0+-,F70*,03,L+-0+̀,y,PM,;31/;,0*-3.;*,L+-0+̀,z

��������� ��	
���
���
������
����	�
����
��

��
��
�
������������
������
���

���� �	��
!"!	�"����#�$�$	�	%����
&�������	�'(����	
�������	
�����"�
��)��*+,-.+/01234567895:;<=;>?5@9ABC9D5:DEFG95B5DHI@J9@5KBJH5JI5L9@J9C5<5MBD5NIOF75EF5JH95K@9LEIOD5EJ9@BJEIF?OK7BJEF85JH957EDJBFG95JI5>*+,-.+/012P45QI59789D5@9ABCRH95NEFBA5DHI@J9DJ5KBJHD5N@IS5L9@J9C5T5MEJH5GI@@9DKIF7EF857EDJBFG9D5ED

��������� ��	
���
���
������
����	�
����
��

��
��
�
������������
������
���

���� �	��
!"!	�"����#�$�$	�	%����
&�������	�'(����	
�������	
�����"�
�� ���)*+,-./*01213*014*156789:8;<=8>?:>@8A?:8B:CDEDAF<;8><;GFAF<;8<;:8DGGFAF<;DC8AFH:8I<B8:D>?8:GJ:K8LI8D;M8<IA?:8>?:>@N8ODNN8A?:;8A?:B:8:EFNAN8D8;:JDAFP:8=:FJ?A8>M>C:8F;8A?:8JBDO?K/QRS8T8UVRS8W8XYVZQ[8\8]8T̂8_8W8_8̀8Va8b/]RS8T8UVRS8W8XYVZ][8\8a8T̂8_8W8Q8̀8c8b/VRS8T8UaRS8W8XYaZV[8\8_8T̂8Q8W8Q8̀8_8b/]RS8T8UQRS8W8XYQZ][8\8a8T̂8Q8W8a8̀8d8b/aRS8T8U]RS8W8XY]Za[8\8Q8T̂8a8W8V8̀8Q8b/QRS8T8U]RS8W8XY]ZQ[8\8Q8T̂8a8W8V8̀8Q8b/aRS8T8UdRS8W8XYdZa[8\8Q8T̂8e8W8]8̀8]8b/]RS8T8UdRS8W8XYdZ][8\8a8T̂8e8W8a8̀8a8bf<A:8A?DA8I<B8A?:8:GJ:N8gh0-4*064gi-*6-0j,-468A?:8B:CDEDAF<;8>BFA:BFD8JFP:N8:klDCFAF:NKmGGFAF<;DCCMZ8A?:8ODA?8A<8D;M8B:D>?DnC:8P:BA:E8>D;8n:8I<l;G8nM8NADBAF;J8DA8A?:8P:BA:E8D;G8I<CC<=F;J8A?:8opNnD>@8A<8A?:8N<lB>:K8q<B8:EDHOC:Z8NADBAF;J8DA8P:BA:E8VZ8UVKo8̀8aZ8UaKo8̀8]Z8U]Ko8̀8d8\8A?:8N?<BA:NA8ODA?8A<P:BA:E8V8FN8rdZ]ZaZVsK8

Topic: Finite Automata [FA]
[DFA to RE (Arden’s Theorem)]

Lecture – XII
Prof. Mithun Roy

Formal Language & Automata Theory
PCC-CS 403

5/31/2021 Compiled by Prof. Mithun Roy, Department of CSE, SIT, Siliguri 1

DFANFANFA-Ɛ
MIN
DFA

L-XII

RE

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 2

Statement −
Let P and Q be two regular expressions.
If P does not contain null string, then R = Q + RP has a unique solution that is R = QP*

Proof −

R = Q + (Q + RP)P [After putting the value R = Q + RP]

= Q + QP + RPP

When we put the value of R recursively again and again, we get the following
equation −

R = Q + QP + QP2 + QP3…..

R = Q (ε + P + P2 + P3 + ….)

R = QP* [As P* represents (ε + P + P2 + P3 + ….)]

Hence, proved.

Arden’s Theorem

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 3

Assumptions for Applying Arden’s Theorem

•The transition diagram must not have NULL transitions

•It must have only one initial state

Method

Step 1 − Create equations as the following form for all the states of the DFA having n states with

initial state q1.

q1 = q1R11 + q2R21 + … + qnRn1 + ε

q2 = q1R12 + q2R22 + … + qnRn2

…………………………
…………………………
…………………………
…………………………

qn = q1R1n + q2R2n + … + qnRnn

Rij represents the set of labels of edges from qi to qj, if no such edge exists, then Rij = ∅

Step 2 − Solve these equations to get the equation for the final state in terms of Rij

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 4

Example - I
Construct a regular expression corresponding to the automata given below −

Here the initial state and final state is q0.
The equations for the tow states q0 and q1 are as follows −

q0 = q0b+ ∈ (i)
q1 = q0a + q1(a + b) – (ii)

From equation (i) R = q0, Q = ∈, P = b ⇒ q0 = ∈ +q0b ⇒ q0 = ∈ b∗ = b∗

From ii , q1 = b∗a + q1 a + b ⇒ q1 = b∗a a + b ∗

So, The RE is 𝐛∗𝐚 𝐚 + 𝐛 ∗

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 5

Example - II
Construct a regular expression corresponding to the automata given below −

Here the initial state and final state is q1.
The equations for the three states q1, q2, and q3 are as
follows −

q1 = q1a + q3a + ε
(ε move is because q1 is the initial state)
q2 = q1b + q2b + q3b
q3 = q2a

q2 = q1b + q2b + q2ab
= q1b + q2 b + ab
R = q2, Q = q1b , P = b + ab
Using the Arden’s
q2 = q1b b + ab ∗

q3 = q2a = q1b b + ab ∗a

Finally,
q1 = q1a + q1b b + ab ∗aa+ ∈
q1 = ∈ +q1 a + b b + ab ∗aa

Using the Arden’s
q1 = a + b b + ab ∗aa ∗

So, R = a + b b + ab ∗aa ∗

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 6

Example - III
Construct a regular expression corresponding to the automata given below −

q1 = ∈ +q10 − i

q2 = q11 + q20 − ii

q3 = q20 + q3 0 + 1 − iii

From (i), q1 = 0∗, Using Arden′s

So, q2 = 0∗1 + q20 = 0∗10∗
𝐑 = 𝟎∗𝟏𝟎∗

Here the initial state and final state is q1.
The equations for the three states q1, q2, and q3 are as
follows −

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 7

Example - IV
Construct a regular expression corresponding to the automata given below −

From (i) q1 = 0∗

So, q2 = 0∗1 + q21 = 0∗11∗

Here, q2 is not depends on q3

So, R = 0∗1 1∗

Here the initial state and final state is q1.
The equations for the three states q1, q2, and
q3 are as follows −

q1 = ∈ +q10 − i

q2 = q11 + q21 − ii

q3 = q20 + q3 0 + 1 − iii

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 8

Example - V
Construct a regular expression corresponding to the automata given below −

A = Bb + Aa+ ∈ − i
B = Aa + Cb + Bb − ii
C = Ba − iii

From i , A = Bba∗

From ii , we put A = Bba∗, So, we get, B
= Cb + Bba∗a + Bb ⇒ Cb + B ba∗a + b
So, B = Cb ba∗a + b ∗

From iii , we put, B = Cb ba∗a + b ,
So we get, C =∈ + Cb ba∗a + b a

Finally, C = b ba∗a + b a ∗

Regular Expression

R = 𝐛 𝐛𝐚∗𝐚 + 𝐛 𝐚 ∗

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 9

Example - VI
Construct a regular expression corresponding to the automata given below −

q0 = ∈ +q0b − i
q1 = q0a + q1b + q2a − ii
q2 = q1a − iii

From (i) q0= b∗, Using Arden′s
From (ii) q1 = b∗a + q1b + q1aa = b∗a + q1 b + aa = b∗a b + aa ∗

From (iii) q2 = b∗a b + aa ∗a

Finally,

q1 + q2 = b∗a b + aa ∗ + b∗a b + aa ∗a

= b∗a b + aa ∗ ∈ +a = b∗a b + aa ∗a

So, The Regular Expression is

r = b∗a b + aa ∗a

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 10

Homework – X
Draw a FA from the RE = ab*(a + ba*)* a

ab* (a+ba*)* a

a a

b

(a+ba*)

a a

a,b

b

a

∈

5/31/2021 Compiled by Mithun Roy, Department of CSE, SIT, Siliguri 11

Homework – XI

Construct a regular expression corresponding to the automata given below −

Binary Search Tree

Paper Name : Data Structure and Algorithm
Paper Code : CS302

Department of Information Technology
Siliguri Institute of Technology

September 4, 2019

Outlines

I Definition

I Representation

I Operation

I Complexity

I Application

Definition
I Definition : A Binary search Tree is a Binary Tree in which

every node value grater than of its right child and less then of
its left child.

I Example :

30

20

10

05

25

23 27

40

Figure: Example of Binary Search Tree.

Representation
A Binary search Tree can represent in two way: array
representation and Linked list representation

I Array Representation:

30 20 40 10 25 - - 5 - 23 27

Table: Array Representation of BST

I Linked list Representation:

Figure: linked list Representation

Operation of BST

In BST there are four basic operation: Traversal, searching, Insert
a node, Delete a node

I Traversal:

I Searching:

I Insert a node:

I Delete a node:

Traversal
Traversal means visiting each node exactly once.

30

20

10

05

25

23 27

40

Figure: Example of Binary Search Tree.

I In Order Traversal:The traversing sequence is
5,10,20,23,25,27,30,40

I Pre Order Traversal:The traversing sequence is
30,20,10,5,25,23,27,40

I Post Order Traversal:The traversing sequence is
5,10,23,27,25,20,40,30

Search a node from BST
Search a node from a Tree means the desired node exist or not in a
BST. Two way to search a node : recursive way and Non recursive
way.

30

20

10

05

25

23 27

40

30

20

10

05

25

23 27

40

Figure: SearchNode25and21

Algorithm for Searching

Algorithm 1 Recursive Search algorithm

INPUT: Binary search Tree (T) and current node i.e present node
PN under scanning . Searched item/key is K
OUTPUT: KEY ELEMENT FOUND if the function return 1 i.e K
in T other wise KEY ELEMENT NOT FOUND the function return
0.

Recursive Searching(TNode ∗ PN,K)
if PN == NULL then

Return 0
else if K == PN → Data then

Return 1
else if K ≤ PN → Data then

Return Recursive Searching(PN → Lchild ,K)
else

Return Recursive Searching(PN → Rchild ,K)
end if

Insert a node in a BST

Insert 30−→
30

Insert 20−→

30

20 Insert 40−→

30

20 40 Insert 25−→

30

20

25

40

Insert 10−→

30

20

10 25

40

Figure: Insert nodes into a Binary Search Tree.

Delete a node from a BST
During delete a node there are three possibility :
i) Deleted node does not have any child
ii) Deleted node have only one child
iii)Deleted node have two child

I No child:

30

20

10

05

25

23 27

40

Delete 05−→

30

20

10 25

23 27

40

Figure: Detete 5 from Binary Search Tree.

Delete One child

30

20

10

05

25

23 27

40

Delete 10−→

30

20

05 25

23 27

40

Figure: Detete 10 from Binary Search Tree.

Delete Two child

30

20

10

05

25

23 27

40

Delete 20−→

30

23

10

05

25

27

40

Figure: Detete 20 from Binary Search Tree.

Complexity of BST

Table: Complexity of BST operations

Operations Best Case Average
Case

Worst Case

Traversal O(N) O(N) O(N)

Searching O(1) O(log N) O(N)

Insert O(1) O(log N) O(N)

Delete O(1) O(log N) O(N)

Applications of BST

(i) BST Used in many searching application where data is
constantly entering or leaving such as map and set object in many
language library
(ii) Storing a set of Names and being able to look up based on a
prefix of the name.
(iii) BST is Used to express arithmetic expressions
(iv) To implement Huffman Coding Algorithm Binary search tree is
used

Thank You

